
High Level Assembler for z/OS & z/VM & z/VSE

Toolkit Feature User's Guide
Version 1 Release 6

GC26-8710-10

���

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
309.

This edition applies to IBM High Level Assembler for z/OS & z/VM & z/VSE Toolkit Feature, Release 6, Program
Number 5696-234 and to any subsequent releases until otherwise indicated in new editions. Make sure that you are
using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality.

IBM welcomes your comments. For information on how to send comments, see “How to send your comments to
IBM” on page xv.

© Copyright IBM Corporation 1992, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this document xi
Who should use this document xi
Syntax notation xi

How to send your comments to IBM . . xv
If you have a technical problem xv

Summary of changes xvii

Chapter 1. Introducing the Toolkit
Feature 1
Toolkit Feature components 1

Toolkit Feature structured programming macros . 2
Toolkit Feature Disassembler 2
Toolkit Feature Program Understanding Tool . . 3
Toolkit Feature Cross-Reference Facility 3
Toolkit Feature Interactive Debug Facility. . . . 4
Enhanced SuperC. 5

Potential uses for the Toolkit Feature 5
Recovery and reconstruction 6
Analysis and understanding 7
Modification and testing 7
Summary 8

Chapter 2. Using structured
programming macros 11
Accessing the macros 12
The ASMMREL macro 12
The IF macro set. 13

IF macro option A 14
IF macro option B 15
IF macro option C 15
IF macro option D 16
IF macros with Boolean operators 17
The ELSEIF macro 18

The DO macro set 19
The DO indexing group 20
DO loop terminator generation 21
Simple DO 21
Infinite loop 21
Branching to the ENDDO. 22
Leaving a nested DO 23
Explicit specification 24
Counting 24
Backward indexing 25
Forward indexing 26
Register initialization 26
The UNTIL and WHILE keywords 27
Looping with DOEXIT and EXITIF 28

The SEARCH macro set 29

The CASE macro set 30
The SELECT macro set 35

Chapter 3. Using the disassembler. . . 39
Invoking the disassembler 39

Invoking the disassembler on z/OS 40
Invoking the disassembler on CMS 41
Invoking the disassembler on z/VSE 43

Control statements 45
Module-CSECT statement (required) 45
DATA-only statement (optional) 46
INSTR-only statement (optional) 46
DS-area statement (optional) 46
DSECT definitions (optional) 47
ULABL statements 47
USING statements 47
COPY statement (optional) 48
Comment statement (optional) 48

Disassembling a module for the first time 48
Output description 49

SYSPUNCH (SYSPCH for z/VSE) content . . . 49
SYSPRINT (SYSLST for z/VSE) content 50

Disassembler CMS messages 50
Disassembler messages 52

Chapter 4. Using the Program
Understanding Tool 57
Introducing ASMPUT 57

More about nodes 58
Getting started 58

Working with ADATA files 61
Opening an ADATA file 61
Opening and closing the control flow graph
window 62
Viewing source code 62
Viewing ADATA file information 67
Viewing Job Id information 69
Viewing HLASM files information. 69
Viewing options information 69
Viewing statistics information 70
Viewing libraries information 70
Removing (closing) a file 70

Working with the control flow graph 70
Expanding and collapsing layers 71
Adding and removing context 77
Refreshing and redoing 78
Hiding and showing return arcs 79
Marking and unmarking nodes 80
Opening and closing the Overview window . . 81
Zooming 82
Scrolling 84
The interaction between source code and the
control flow graph 85

ASMPUT windows and window areas 87
Main window 87

© Copyright IBM Corp. 1992, 2013 iii

Control Flow Graph window 94
Control Flow Graph window menu options and
toolbar icons 96
Overview window 100

Restrictions 100
Using online help 101

Using topic help 101
Using what's this help 102

ASMPUT messages 102

Chapter 5. Using the Cross-Reference
Facility 109
Invoking the Cross-Reference Facility 110

Invoking ASMXREF on z/OS 111
Invoking ASMXREF on CMS 117
Invoking ASMXREF on z/VSE 122

ASMXREF Control Statements 128
*. 128
Library 128
Include 129
Exclude 130
Parm 130
Report. 130

ASMXREF Token Statement 131
Token 131
Scanning rules for ASMXREF 133

ASMXREF Options 134
ASMXREF XRFLANG Statements 134

Default token segment 135
Language segment 136

ASMXREP Options 136
Understanding the reports 137

Languages supported by reports 137
Control flow (CF) report. 138
Lines Of Code (LOC) report 140
The LOOC report 145
Macro Where Used (MWU) report 147
Spreadsheet Oriented Report (SOR) 148
Symbol Where Used (SWU) report 149
Token Where Used (TWU) report. 153
Tagged Source Program (TSP) 154

ASMXREF Messages 158
Message list 158

ASMXREF User Abends 168

Chapter 6. Using Enhanced SuperC 171
The SuperC comparison 171
The SuperC search 172
SuperC features for date comparisons 172
General applications 173
How SuperC and search-for filter input file lines 174
How SuperC corrects false matches 174
How SuperC partitions and processes large files 175
Comparing load modules 175
Comparing CSECTs 176
Invoking the SuperC comparison 176

Invoking the comparison on z/OS 176
Invoking the comparison on CMS using menu
input 179

Invoking the comparison on CMS using
command line input 186
Invoking the comparison on z/VSE 193

Invoking the SuperC search 199
Invoking the search on z/OS 199
Invoking the search on CMS using menu input 200
Invoking the search on CMS using command
line input. 207
Invoking the search on z/VSE. 213

Process options 216
Process statements. 227

Change listing value 229
Change text 229
Comment lines 230
Compare byte offsets 231
Compare (search) columns 232
Compare lines 233
Compare sections 234
DD-MVS alternate DD names 235
DD-VSE DLBL/TLBL definitions 236
Define column headings 239
Do not process lines 241
Exclude data 242
Focus on data 243
Line count 244
List columns 244
List previous-search-following value. 244
Revision code reference 245
Search strings in the input file 245
Select files from a list of files (CMS) 247
Select members or files (CMS) 247
Select members (z/VSE) 248
Select PDS members (z/OS) 249
Statements file listing control 250
Title alternative listing 251
Work size 251
Year aging 252
Date definitions 252
Global date 255

CMS command line option directives 255
CMS command line statement option directives 256
Understanding the listings 257

General listing format 258
How to view the listing output 258
The comparison listing 259
The search listing 270

Update files 278
Revision file 279
Revision file (2). 280
Update CMS sequenced 8 file 281
Update control files 282
Update long control 284
Update MVS sequenced 8 file 285
Update prefixed delta lines 286
Update sequenced 0 file 287
Update summary only files. 287

CMS file selection list 290
Getting to the selection list menus 291

How SuperC pairs CMS files and members . . . 295
Pairing Files 295
Pairing members 296

iv High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

CMS files used by SuperC 297
Reasons for differing comparison results 297
Return codes 298
SuperC messages 299

Notices 309
Trademarks 310

Bibliography 311

Glossary 313

Index 321

Contents v

vi High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Figures

1. Typical phases for Toolkit Feature usage . . . 5
2. Toolkit Feature: Recovery and Reconstruction

Phase 6
3. Toolkit Feature: Analysis and Understanding

Phase 7
4. Toolkit Feature: Modification and Testing Phase 8
5. Toolkit Feature: Summary of Usage Phases 8
6. Sample disassembler z/OS JCL 40
7. Sample disassembler z/VSE JCL 44
8. An example of code and nodes 58
9. The ASMPUT main window 59

10. The ASMPUT control flow graph window 60
11. A source code listing not displaying any

expanded lines 64
12. A source code listing displaying a set of

expanded lines 65
13. The information notebook Statistics tab 68
14. More Statistics information 69
15. A completely collapsed control flow graph 72
16. A portion of the same control flow graph

expanded by one layer 73
17. A portion of the same control flow graph,

completely expanded 74
18. One node expanded in context 75
19. One node expanded to the window 76
20. The same node collapsed to context 77
21. A control flow graph with the return arcs

hidden 79
22. A control flow graph with the return arcs

displayed 80
23. The Overview window. 81
24. A graph at maximum zoom 82
25. A graph at minimum zoom 83
26. Displaying the control flow graph window and

main window side-by-side 86
27. The topic help for the Job Id tab 101
28. Sample z/OS ASMXREF JCL (part 1 of 3) 112
29. Sample z/OS ASMXREF JCL (part 2 of 3) 113
30. Sample z/OS ASMXREF JCL (part 1 of 3) 114
31. Sample ASMXSCAN procedure 116
32. Sample ASMXRPT procedure 117
33. Example control file for CMS ASMXREF

EXEC 119
34. Example token statement file for CMS

ASMXREF EXEC 119
35. Default options file for ASMXREF EXEC 121
36. Sample ASMXREF z/VSE JCL (part 1 of 3) 124
37. Sample ASMXREF z/VSE JCL (part 2 of 3) 125
38. Sample ASMXREF z/VSE JCL (part 3 of 3) 126
39. Sample XRFLANG file 135
40. Sample C program used for CF report 139
41. Sample CF report 140
42. Sample LOC report 141
43. Sample unit descriptor 142
44. Sample change-flag descriptors 144
45. Sample XREF header 145

46. Sample LOC per Class section 146
47. Sample LOC per Object section 147
48. Sample Objects per Class section 147
49. Sample Macro Where Used (MWU) report 148
50. Sample Spreadsheet Oriented Report for

z/OS and CMS 149
51. Sample Spreadsheet Oriented report for

z/VSE 149
52. Sample Symbol Where Used (SWU) report

(part 1 of 2) 151
53. Sample Symbol Where Used (SWU) report

(part 2 of 2) 152
54. Sample SWU sorted via SYMC. 153
55. Sample Token Where Used (TWU) report 154
56. Sample Tagged Source Program (TSP) part 1

of 2 156
57. Sample Tagged Source Program (TSP) part 2

of 2 157
58. Illustration of how SuperC compares files 172
59. Priority for filtering input lines 174
60. Sample z/OS JCL to run the SuperC

comparison 177
61. SuperC primary comparison menu 179
62. SuperC primary comparison menu with

process options entered directly 183
63. Example of the SuperC process options

selection menu (LINE comparison) 183
64. Example of the SuperC process statements

entry menu (Comparison) 184
65. Example of the SuperC wide print menu 186
66. Example of invoking SuperC from FILELIST 192
67. Sample z/VSE JCL for comparing

non-VSAM-managed sequential files 194
68. Sample z/VSE JCL for comparing

VSAM-managed sequential files 196
69. Sample z/VSE JCL for comparing VSAM files 197
70. Sample z/VSE JCL for comparing labeled

tape files 197
71. Sample z/VSE JCL for comparing all

like-named members in two sublibraries . . 198
72. Sample z/OS JCL to run the SuperC search 199
73. SuperC primary search menu 201
74. SuperC primary search menu with process

options entered directly 204
75. Example of the SuperC process options

selection menu (search) 205
76. Example of the SuperC process statements

entry menu (search) 206
77. Sample z/VSE JCL for searching a

non-VSAM-managed sequential file 213
78. Sample z/VSE JCL for searching a

VSAM-managed sequential file 214
79. Sample z/VSE JCL for searching a VSAM file 215
80. Sample z/VSE JCL for searching a labeled

tape file 215

© Copyright IBM Corp. 1992, 2013 vii

81. Sample z/VSE JCL for searching all members
in a sublibrary 216

82. Example of page heading lines for the
comparison listing 259

83. Example of the listing output section of the
comparison listing 259

84. Example of the member summary section of
the comparison listing 262

85. Example of the overall summary section of
the comparison listing 263

86. Example of comparison listing with dates
being compared. 264

87. Example of comparison listing with column
headings (Using COLHEAD) 265

88. Example of a NARROW side-by-side listing 265
89. Example of a NARROW side-by-side listing

(with DLMDUP) 266
90. Example of a WIDE side-by-side listing 267
91. Example of a FILE comparison of a file group 268
92. Example of a FILE comparison of a file group

(with LOCS) 269
93. Example of a WORD comparison 270
94. Example of the page heading line for the

search listing. 270
95. Example of the source lines section of a

search listing. 271
96. Example of the IDPFX source lines section of

a search listing 272
97. Example of the LMTO source lines section of

a search listing 272
98. Example of the XREF source lines section

(with ANYC) 273
99. Example of the summary section of a search

listing 274
100. Example of the XREF summary section of a

search listing. 274
101. Example of the search listing (single file) 275

102. Example of IDPFX search on file group 276
103. Example of XREF search on file group for

two strings 276
104. Example of LMTO search on file group 277
105. Example of XREF/LMTO search of file group 277
106. Example of LTO search on file group 278
107. Example of LPSF search on file group 278
108. The “Old” input file used in most of the

update examples 279
109. The “New” input file used in most of the

update examples 279
110. Example of a UPDREV update file for

SCRIPT/VS documents 280
111. Example of a UPDREV update file for

bookmaster documents 280
112. Example of a UPDCMS8 update file 281
113. Example of a UPDCNTL update file using

line compare type 282
114. Example of a UPDCNTL update file using

WORD compare type 283
115. Example of a UPDCNTL update file using

BYTE compare type 284
116. Example of a UPDLDEL update file 285
117. Example of a UPDMVS8 update file 286
118. Example of a UPDPDEL update file 286
119. Example of a UPDSEQ0 update file 287
120. Example of a UPDSUMO file using LINE

compare type 288
121. Example of a UPDSUMO file using WORD

compare type 289
122. Example of a UPDSUMO file using BYTE

compare type 290
123. Example of a CMS selection list menu (file

group comparison). 291
124. Example of a CMS selection list menu (file

group search) 293

viii High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Tables

1. Toolkit Feature Components 8
2. Predicate values and connector/terminator

values 13
3. Mnemonics and complements 14
4. DO loop terminator generation 21
5. Generated instructions for given values 26
6. DATA-only statement: format 46
7. INSTR-only statement: format 46
8. DS-area statement: format. 46
9. DSECT header statement: format 47

10. DSECT field statement: format 47
11. ULABL statements: format 47
12. USING statements: format 48
13. COPY statement: format 48
14. Comment statement: format 48
15. z/OS Files Supplied with ASMXREF 111
16. CMS Files Supplied with ASMXREF 117
17. z/VSE Files Supplied with ASMXREF 123
18. XRFLANG Supported Languages 128

19. Languages supported by ASMXREF reports 137
20. Process class code conventions 142
21. Definition of the change-flag-descriptor fields 143
22. Message level 158
23. ASMXREF Abend Codes 168
24. ASMXREP Abend Codes 168
25. Summary of process options 217
26. Summary of process statements 227
27. UPDCNTL update file format using LINE

compare type 282
28. UPDCNTL update file format using WORD

compare type 283
29. UPDCNTL update file format using BYTE

compare type 284
30. UPDSUMO format using LINE compare type 288
31. UPDSUMO format using WORD compare

type. 289
32. UPDSUMO format using BYTE compare type 290
33. SuperC return codes 298

© Copyright IBM Corp. 1992, 2013 ix

x High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

About this document

This document describes how to use these components of the IBM® High Level Assembler Toolkit
Feature:
v Structured programming macros
v Disassembler
v Program Understanding Tool (ASMPUT)
v Cross-Reference Facility (ASMXREF)
v Enhanced SuperC

Throughout this book, we use these indicators to identify platform-specific information:
v Prefix the text with platform-specific text (for example, “Under CMS...”)
v Add parenthetical qualifications (for example, “(CMS)”)
v A definition list, for example:

z/OS Informs you of information specific to z/OS®.

z/VM Informs you of information specific to z/VM®.

z/VSE Informs you of information specific to z/VSE®.

CMS is used in this manual to refer to Conversational Monitor System on z/VM.

Who should use this document
This document is for programmers who code in the High Level Assembler language or wish to use a
component of the HLASM Toolkit Feature.

To use this document, you need to be familiar with the High Level Assembler language, the z/OS, z/VM,
or z/VSE operating system, the publications that describe your system, and job control language (JCL) or
EXEC processing.

Syntax notation
Throughout this book, syntax descriptions use this structure:
v Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The ��── symbol indicates the beginning of a statement.
The ───� symbol indicates that the statement syntax is continued on the next line.
The �─── symbol indicates that a statement is continued from the previous line.
The ──�� indicates the end of a statement.
Diagrams of syntactical units other than complete statements start with the �─── symbol and end with
the ───� symbol.

v Keywords appear in uppercase letters (for example, ASPACE) or uppercase and lowercase (for
example, PATHFile). They must be spelled exactly as shown. Lowercase letters are optional (for
example, you could enter the PATHFile keyword as PATHF, PATHFI, PATHFIL, or PATHFILE).
Variables appear in all lowercase letters in a special typeface (for example, integer). They represent
user-supplied names or values.

v If punctuation marks, parentheses, or such symbols are shown, they must be entered as part of the
syntax.

v Required items appear on the horizontal line (the main path).

© Copyright IBM Corp. 1992, 2013 xi

�� INSTRUCTION required item ��

v Optional items appear below the main path. If the item is optional and is the default, the item appears
above the main path.

�� INSTRUCTION
default item

optional item
��

v When you can choose from two or more items, they appear vertically in a stack.
If you must choose one of the items, one item of the stack appears on the main path.

�� INSTRUCTION required choice1
required choice2

��

If choosing one of the items is optional, the whole stack appears below the main path.

�� INSTRUCTION
optional choice1
optional choice2

��

v An arrow returning to the left above the main line indicates an item that can be repeated. When the
repeat arrow contains a separator character, such as a comma, you must separate items with the
separator character.

�� INSTRUCTION �

,

repeatable item ��

A repeat arrow above a stack indicates that you can make more than one choice from the stacked
items, or repeat a single choice.

Format

The following example shows how the syntax is used.

xii High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

�A� The item is optional, and can be coded or not.

�B� The INSTRUCTION key word must be specified and coded as shown.

�C� The item referred to by “fragment” is a required operand. Allowable choices for this operand are
given in the fragment of the syntax diagram shown below “fragment” at the bottom of the
diagram. The operand can also be repeated. That is, more than one choice can be specified, with
each choice separated by a comma.

�A� �B� �C�

��
optional item

INSTRUCTION �

,

fragment ��

fragment:

operand choice1
(1)

operand choice2
operand choice3

Notes:

1 operand choice2 and operand choice3 must not be specified together

About this document xiii

xiv High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

How to send your comments to IBM

If you especially like or dislike anything about this book, feel free to send us your comments.

You can comment on what you regard as specific errors or omissions, and on the accuracy, organization,
subject matter, or completeness of this book. Please limit your comments to the information that is in this
book and to the way in which the information is presented. Speak to your IBM representative if you have
suggestions about the product itself.

When you send us comments, you grant to IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

You can get your comments to us quickly by sending an e-mail to idrcf@hursley.ibm.com. Alternatively,
you can mail your comments to:

User Technologies,
IBM United Kingdom Laboratories,
Mail Point 095, Hursley Park,
Winchester, Hampshire,
SO21 2JN, United Kingdom

Please ensure that you include the book title, order number, and edition date.

If you have a technical problem
Do not use the feedback methods listed above. Instead, do one of the following:
v Contact your IBM service representative
v Call IBM technical support
v Visit the IBM support web page

© Copyright IBM Corp. 1992, 2013 xv

http://www.ibm.com/support/entry/portal/overview/software/other_software/high_level_assembler_and_toolkit_feature

xvi High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Summary of changes
Date of Publication

August 2013

Form of Publication
Eleventh Edition, GC26-8710-10

This document has been reformatted to conform to IBM's latest standards.

Since the previous edition, there have been minor editorial adjustments.

© Copyright IBM Corp. 1992, 2013 xvii

xviii High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Chapter 1. Introducing the Toolkit Feature

The High Level Assembler Toolkit Feature is an optional, separately priced feature of IBM High Level
Assembler for z/OS & z/VM & z/VSE (HLASM). It provides a powerful and flexible set of tools to
improve application recovery and development on z/OS, z/VM, and z/VSE systems. These
productivity-enhancing tools are:

The structured programming macros
A complete set of macro instructions that implement the most widely used structured-
programming constructs (IF, DO, CASE, SEARCH, SELECT). These macros simplify coding and
help eliminate errors in writing branch instructions.

The Disassembler
A tool which converts binary machine language to assembler language source statements. It helps
you understand programs in executable (object or “load”) format, and enables recovery of lost
source code.

The Program Understanding Tool
A workstation-based program analysis tool. It provides multiple and “variable-magnification”
views of control flows within single assembled programs or across entire load modules.

The Cross-Reference Facility
A flexible source code cross-referencing tool. It helps you determine variable and macro usage,
and locates specific uses of arbitrary strings of characters.

The Interactive Debug Facility
A powerful and sophisticated symbolic debugger for applications written in assembler language
and other compiled languages. It simplifies and speeds the development of correct and reliable
applications. For information about the Interactive Debug Facility see the HLASM Toolkit Feature
Interactive Debug Facility User's Guide and the HLASM Toolkit Feature Debug Reference Summary.

Enhanced SuperC
A versatile comparison and search facility for comparing two sets of data and showing the
differences in an easy-to-read format.

Special features allow for the “smart comparison” of dates.

You can exclude certain data from the comparison.

Enhanced SuperC also provides an extensive search tool.

Together, these tools provide a powerful set of capabilities to speed application development, diagnosis,
and recovery.

The following sections describe these components in three phases. Each phase is typical of program
development, maintenance, conversion, and enhancement activities such as:
v Recovery and reconstruction of symbolic assembler language source code
v Analysis and understanding of complex assembler language programs
v Modification and testing

Toolkit Feature components
First, a description of each of the components. You can use the Toolkit Feature's components
independently of HLASM.

© Copyright IBM Corp. 1992, 2013 1

Toolkit Feature structured programming macros
The HLASM Toolkit Feature structured programming macros simplify the coding and understanding of
complex control flows, and help to minimize the likelihood of introducing errors when coding test and
branch instructions. For details on the structured programming macros see Chapter 2, “Using structured
programming macros,” on page 11.

These macros support the most widely used structured-programming control structures and eliminate the
need to code most explicit branches.

You can use the Toolkit Feature structured programming macros to create the following structures:

IF/ELSE/ENDIF
One-way or two-way branching, depending on simple or complex test conditions.

DO/ENDDO and STRTSRCH/ORELSE/ENDLOOP/ENDSRCH
A rich and flexible set of looping structures with a variety of control and exit facilities.

CASENTRY/CASE/ENDCASE
Fast N-way branching, based on an integer value in a register. Deciding which branch to take is
made at the CASENTRY macro; a direct branch to the selected CASE is then done, followed by
an exit at the ENDCASE macro.

There is no OTHRWISE facility within this macro set.

SELECT/WHEN/OTHRWISE/ENDSEL
Sequential testing, based on sets of comparisons. These macros create a series of tests that are
evaluated in the order they are specified in the program. If a test is true, the WHEN section of
code for that test is executed, followed by an exit at the ENDSEL macro.

If no test is satisfied, then the OTHRWISE section (if present) is performed.

All the macro sets may be nested, and there are no internal limits to the depth of nesting. Tests made by
the various ENDxxx macros ensure that each structure's nesting closure is at the correct level, and
diagnostic messages (MNOTEs) are issued if they are not.

Toolkit Feature Disassembler
The HLASM Toolkit Feature Disassembler lets you extract single control sections (CSECTs) from object
modules or executables such as load modules and phases. It converts them to assembler language
statements that you can assemble to generate the same object code. For details on the Disassembler see
Chapter 3, “Using the disassembler,” on page 39.

Your first control statement specifies the module and control section you are to disassemble. Adding
control statements provides further guidance and helpful information to the Disassembler, allowing it to
create a more readable program. You can supply sets of control statements in the primary input stream to
the Disassembler, or (as each set is developed) you can save them in a library and direct the Disassembler
to read them using COPY control statements.
v You can describe the layout of the control section with control statements asserting that certain areas of

the module contain data only, instructions only, or are known to be uninitialized.
v You can request symbolic resolutions of halfword base-displacement storage by supplying control

statements giving base addresses and the base registers for addressing.
v You can define data structures (DSECTs) and assign your own labels to designated positions in the

program.
v The Disassembler automatically assigns symbolic names to registers. Branch instructions use extended

mnemonics where possible, and identifies supervisor call (SVC) instructions when known.
v The Disassembler listing provides a full summary of the inputs and outputs of the disassembly, and

places the reconstructed assembler language source program in a separate PUNCH file.

2 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

If you use the High Level Assembler with the ADATA option to assemble disassembler-generated
statements, High Level Assembler generates a SYSADATA file (sometimes called the ADATA file). You
can use this file as input to other Toolkit Feature components. This combination of facilities can help you
recover lost source code written in any compiled language.

Toolkit Feature Program Understanding Tool
The Program Understanding Tool (ASMPUT) helps you analyze and extract information about assembler
language applications, using a Windows graphical user interface to display graphical and textual views of
an application's structure. ASMPUT extracts application analysis information from the SYSADATA file
generated during host assembly by HLASM; you must download this ADATA file to your workstation for
analysis. For details on Program Understanding Tool see Chapter 4, “Using the Program Understanding
Tool,” on page 57.

You can use ASMPUT to display selected programs and modules in these linked views:
v A Content view
v An Assembled Listing view
v A graphical Control Flow view
v An Expanded Source Code view

These views provide complete high-level to low-level information about assembler language applications:
v At the highest level, you can discover the relationships among programs and within modules.
v You can gradually descend program layers discovered by analysis of the individual programs to arrive

at the lowest level, where you can examine details of internal control flows within each program.

ASMPUT lets you display multiple views of a given program or module. These multiple views are
linked: scrolling through one view automatically scrolls through all other open views of that program,
module, or application. Linked views help you see quickly the association between the assembled source
code and the graphical control-flow representations of the program.

At any time, you can narrow or expand the focus of your analysis by zooming in or out on areas of
particular interest. For example, you can use the View Contents window to scroll through the contents of
an application and simultaneously see the change in control flow information displayed in the View
Control Flow window.

ASMPUT displays several folders which provide a complete inventory of application analysis
information, program samples, tools, documentation, help files, and a detailed tutorial to help you learn
to use ASMPUT to analyze assembler language applications.

Toolkit Feature Cross-Reference Facility
The High Level Assembler Toolkit Feature Cross-Reference Facility (ASMXREF) supports your
maintenance tasks by scanning assembler language source, macro definitions, and copy files for symbols,
macro calls, and user-specified tokens. For details on ASMXREF see Chapter 5, “Using the
Cross-Reference Facility,” on page 109.

You can use ASMXREF for identifying fields of application importance such as DATE, TIME, and YYMMDD.
You can use an arbitrary “match anything” character (sometimes called a wildcard character) to create
generic tokens such as “"YY*"”; the scan then searches for occurrences of the token with any other
characters allowed in the position of the arbitrary character. You may also specify tokens to be excluded
from a generic search, so that an exclude token such as “SUMMER” rejects matches of SUMMER when the
include token is *MM*.

ASMXREF scans source code, in the following languages, for user-specified and default tokens:
v Assembler
v C

Chapter 1. Introducing the Toolkit Feature 3

v C++
v COBOL
v FORTRAN
v PL/I
v REXX

ASMXREF provides several reports:

Control Flow (CF) Report
The CF report tabulates all intermodule program references as a function of member or entry
point name, and lists them in the order of the members referring to the subject entry point or the
entry point names referred by the subject member.

Lines of Code (LOC) Report
Provides a count, arranged by part and by component, of the number of source lines and
comments in the part, and the shipped source instructions (SSI), which are the number of
instructions within each part scanned, both executable and non-executable, that are not spaces or
comments. As well, the report shows the changed source instructions (CSI), which are the number
of unique SSI that have been modified in each part categorized by added, changed, deleted,
moved, and so on. In addition, the LOC Report provides a summary report of CSI arranged by
programmer.

Lines of OO Code (LOOC) Report
Provides, for C++, the Lines of Code (LOC) per Class and per Object, and Objects per Class.

Macro Where Used (MWU) Report
Lists all macros invoked and all segments copied, including the type and frequency of the
invocation or reference.

Symbol Where Used (SWU) Report
Lists all symbols referenced within the source members, and the type of reference. These symbols
can be variables or macros.

Spreadsheet Oriented (SOR) Report
A comma-delimited file suitable for input into a standard spreadsheet application. It shows for
each module scanned the number of lines of code, the number of occurrences of each token, and
the total number of token matches. This information helps you identify the critical modules in an
application and estimate the effort required for modifications.

Token Where Used (TWU) Report
Contains similar information to the SOR report, but in an easily readable format.

Before ASMXREF generates the TWU report, it creates a Tagged Source Program (TSP). This
program contains special inserted comment statements where tokens are found, so that
subsequent assembly of the “tagged” file helps you track important variables during control-flow
analysis using ASMPUT, see “Toolkit Feature Program Understanding Tool” on page 3.

Toolkit Feature Interactive Debug Facility
The HLASM Toolkit Feature Interactive Debug Facility (IDF) supports a rich set of capabilities that speed
error detection and correction. Although IDF is intended primarily for debugging assembler language
programs on z/OS, z/VM, and z/VSE, you can also use it to debug programs written in most high-level
languages.
v IDF provides multiple selectable views of a program, including separate windows for address stops,

breakpoints, register displays, object code disassembly, storage dumps, language-specific support,
register histories, non-traced routines, and other information. You can use these views in any order or
combination.

v You can control execution of a program by stepping through individual instructions or between
selected breakpoints or routines.

4 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

v If source code is available (which is almost always the case for programs assembled with HLASM), IDF
can display source statements as it executes the program.

v The power of IDF is greatly magnified by its ability to pass control from any breakpoint to user exit
routines written in REXX or other languages that can capture and analyze program data, and respond
dynamically to program conditions.

v You can count instruction executions, and IDF can maintain an instruction execution history.
v You can dynamically modify storage areas and register contents during debugging by typing new

values on the displays.
v IDF supports a special class of conditional breakpoints called watchpoints, which IDF triggers only

when a user-specified condition occurs.
v A command-level record and playback facility allows a debugging session to be re-executed

automatically.
v Extensive tailoring capabilities allow you to establish a familiar debugging environment. Most

debugging actions can be easily controlled by PF-key settings.

For more details on Interactive Debug Facility see the HLASM Toolkit Feature Interactive Debug Facility
User's Guide and the HLASM Toolkit Feature Debug Reference Summary.

Enhanced SuperC
The Enhanced SuperC (known as SuperC) is a versatile comparison and search facility that can be used
to compare two sets of data (using the SuperC Comparison) or to search a specific set of data for a
nominated search string (using the SuperC Search).

At a minimum, the SuperC Comparison requires only the names of the two items to be compared. The
SuperC Search requires only the name of the item to be searched and the search string.

You can tailor the comparison or search using process options and process statements. Process options are
single keywords that you enter on the PARM parameter (z/OS and z/VSE), a menu (CMS), or the
command line (CMS). Process statements consist of a keyword and one or more operands; you pass these
to SuperC in an input file.

For example, you can use the process option ANYC (“Any Case”) so that SuperC treats uppercase and
lowercase characters as the same. (Thus, “d” and “D” are considered to be the same.) You can use the
process statement DPLINE (“Do not Process Lines”) to ignore the lines (being compared or searched) that
contain a specified character string. For example, DPLINE ’$’ causes all lines that contain the
single-character string “$” to be ignored.

Potential uses for the Toolkit Feature
The following figure shows three phases of a redevelopment project. This section describes potential uses
for the Toolkit Feature during each of these phases.

1. Recovery and reconstruction of assembler language source statements from object modules, or load
modules, for which the original source is lost. The disassembler initially produces non-symbolic
assembler language source from object code. You can add control statements iteratively to help define
code, data, USINGs, labels, and DSECTs symbolically.

┌────────────┐ ┌────────────┐ ┌────────────────────┐
│ Recovery ├───────→┤ Analysis ├───────→┤ Modification and │
│ Phase │ │ Phase │ │ Testing Phase │
└────────────┘ └────────────┘ └────────────────────┘

Figure 1. Typical phases for Toolkit Feature usage

Chapter 1. Introducing the Toolkit Feature 5

2. Analysis and understanding of assembler language source programs can benefit from three Toolkit
components: the Cross-Reference Facility, the Program Understanding Tool, and the Interactive Debug
Facility.
a. You can use the Cross-Reference Facility token scanner to locate important symbols, user-selected

tokens, macro calls, and other helpful data. ASMXREF also creates an “impact-analysis” file for
input to a spreadsheet application for effort estimation and impact assessment. Another ASMXREF
output is a Tagged Source Program: when assembled with the ADATA option, this program
produces a SYSADATA file for you to use with the Program Understanding Tool.

b. The Program Understanding Tool provides graphic displays of program structure, control flow, a
simplified listing, and other views with any desired level of detail. With the ADATA file created
from the tagged source produced by ASMXREF, you can rapidly locate and analyze key areas of
the program.

c. The Interactive Debug Facility is by design a “program understanding” tool that lets you monitor
the behavior of programs at every level of detail. You can monitor and trace data flows among
registers and storage, even showing the operations of individual instructions!

You can use the Disassembler, Cross-Reference Facility, Program Understanding Tool and Interactive
Debug Facility together to help reconstruct lost assembler language source (with the same function as
that produced by a high level language compiler).

3. Modification and Testing of updated programs is simplified by using the powerful Interactive Debug
Facility. At the same time, you can simplify program logic by replacing complex test/branch logic
with the structured programming macros.
You can use the Enhanced SuperC to compare an original source file with a modified source file, or a
pre-migration application output file with a post-migration output file, and report the differences
between the files.Enhanced SuperC can report all differences, or you can set options to exclude the
reporting of differences when those differences are correctly modified date fields. You can also limit
the comparison to date fields only.

Recovery and reconstruction
During the Recovery and Reconstruction phase, you typically begin with a program in object or
executable format. Using the Disassembler, and by providing suitable control statements, you can create
an assembler language source program with as much structure and symbolic labeling as you like.

Repeat the disassembly/analysis/description/assembly cycle until you obtain satisfactory assembler
language source code.

The initial steps do not require reassembly of the generated assembler language source, as appropriate
control statements are enerally easy to determine from the Disassembler listing. As the recovered
program approaches its final form, you should assemble it with HLASM to ensure the validity of your
new source program.

┌───────────┐ ┌──────────────┐ ┌───────────┐ Recovered
│Lost source│ │ │ │ Assembler │ Assembler
│(object or ├──┬─→┤ Disassembler ├──→┤ Language ├─→─┬──→ Language
│executable)│ │ │ │ │ Source │ │ Source Code
└───────────┘ │ └──────────────┘ └───────────┘ │

↑ ↓
│ ┌────────────────────┐ ┌────┴────┐
│ │ Inspect assembly, │ │ │
└─←──┤ create appropriate ├←─────┤ HLASM │

│ control statements │ │ │
└────────────────────┘ └─────────┘

Figure 2. Toolkit Feature: Recovery and Reconstruction Phase

6 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Analysis and understanding
The most complex aspect of application maintenance and migration is analyzing and understanding the
code. There are three components of Toolkit Feature that can help:

ASMXREF
Can locate all uses of a variable name or any character string. You can also produce a Tagged
Source Program.

ASMPUT
Provides graphical views of control flows within and among programs and modules.

IDF Helps you monitor and track the behavior of individual instructions and data items.

While each of these components has valuable capabilities, using them in combination can provide great
synergy in analyzing and understanding program behavior.

Modification and testing
After you have used the Disassembler, ASMXREF, and ASMPUT components to determine the needed
modifications, you can add structured programming macros to simplify the coding and logic of the
program.

You can then test the updated code using the rich and flexible features of the Interactive Debug Facility.
After each assembly/debug cycle, you can further modify the source code, repeating the process until the
completed application is accepted for installation in a production library. You can useEnhanced SuperC to
compare the original source with the modified source, checking that all references to date have been
correctly modified.

┌─────────────────────┐
│ Control statements, │
│ token lists │
└───────┬─────────────┘

┌───────────┐ ↓
│ Assembler │ ┌────┴────┐ ┌──────────┐ ┌────────┐ List of
│ language ├──┬─→┤ ASMXREF ├──→┤ ASMPUT ├──→┤ ASMIDF ├──→ desired
│ source │ │ └────┬────┘ └────┬─────┘ └───┬────┘ changes
└───────────┘ │ ↓ ↑ ↑

│ Tagged ├─────────────┘
│ source ADATA
│ │ ↑
↓ ↓ ┌────┴─────┐
└─→─────┴───────→┤ HLASM │

└──────────┘

Figure 3. Toolkit Feature: Analysis and Understanding Phase

Chapter 1. Introducing the Toolkit Feature 7

Summary
These phases illustrate how the HLASM Toolkit Feature provides a varied and powerful set of tools
supporting all aspects of application development, maintenance, enhancement, and testing. The following
figure summarizes these capabilities:

A typical process for managing the full spectrum of application recovery, development, and maintenance
activities includes several steps. Table 1 shows the Toolkit Feature tools useful each step.

Table 1. Toolkit Feature Components

Activity Toolkit Feature Components

Inventory and assessment The Disassembler can help recover programs previously unretrievable or
unmodifiable.

Locate date fields and uses The Cross-Reference Facility pinpoints date fields and localizes references to
them in single or multiple modules. SuperC provides powerful string-search
facilities.

Application understanding The Program Understanding Tool provides powerful insights into program
structures and control flows. The Interactive Debug Facility monitors
instruction and data flows at any level of detail.

┌─────────────┐
│ Structured │
│ Programming │
│ Macros │
└──────┬──────┘

┌───────────┐ ↓
│ Assembler │ ┌──────┴──────┐ ┌───────┐ ┌────────┐ ┌──────┐ Completed,
│ Language ├─┬→─┤ Source Mods ├─→┤ HLASM ├─→┤ ASMIDF ├─→┤SuperC├──┐ Revised
│ Source │ │ └─────────────┘ └───┬───┘ └────┬───┘ └──────┘ │ Application
└───────────┘ │ ↓ ↑ │

↑ └──→ADATA──→┘ ↓
│ │
└←───── modify/assemble/test cycle ←─────────────────┘

Figure 4. Toolkit Feature: Modification and Testing Phase

┌─────────────┐ ┌─────────┐
│Lost source │ │ SP macs │
│(object,load)│ └────┬────┘
└─────┬───────┘ ↓

↓ ASMXREF ASMPUT │
┌─────┴───────┐ ┌───────────┐ ┌─────────┐ ┌────┴─────┐ ┌────────┐ ┌───────┐
│Disassembler ├─→───Source──→┤ CrossRef ├─→┤ ProgUnd ├─→─Updated─→┤ HLASM ├──→──┤ IDF ├─→─┤SuperC │
└──┬─────┬────┘ Code └─────┬─────┘ └────┬────┘ Source └────┬─────┘ └───┬────┘ └───┬───┘

↑ ↓ │ ↓ │ ↑ ↓ ↑ │
│ │ ↓ │ ↑ │ │ │ │
┌┴─────┴┐ │ ┌───┴───┐ │ │ └─────ADATA─────┘ │
│ HLASM │ └───────→─┤ HLASM ├───ADATA─┘ └────────────modifications──────────────┘
└───────┘ └───────┘

←───Recovery───→ ←─────Analysis─────→ ←───────Modify and Test───────→
Phase Phase Phase

Figure 5. Toolkit Feature: Summary of Usage Phases

8 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Table 1. Toolkit Feature Components (continued)

Activity Toolkit Feature Components

Decide on fixes and methods

Implement changes The structured programming macros clarify source coding by reducing the
need for coding branches and tests, replacing them with readable structures.
SuperC helps verify that source changes are complete.

Unit test The Interactive Debug Facility provides powerful debugging and tracing
capabilities for verifying the correctness of changes.

Debug The Interactive Debug Facility helps debug complete applications, including
dynamically loaded modules.

Validation SuperC checks regressions, validates correctness of updates.

Chapter 1. Introducing the Toolkit Feature 9

10 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Chapter 2. Using structured programming macros

The complexity of control flow in a program strongly affects its readability, the early detection of coding
errors, and the effort needed to modify it later. You can generally simplify control flow (though
sometimes at the cost of less efficiency and more redundant code) by restricting the ways in which
branches occur. One way to restrict branches is to use only those necessary to implement a few basic
structures such as:
v Executing one of two blocks of code according to a true-false condition
v Executing a block of code repeatedly until some limit is reached
v Executing a specific block of code, in a given set, where the block was previously computed

If statements exist for all these structures in a programming language, then they are used exclusively. If
some are missing, then simple branches are used to simulate those structures but only in standard
patterns. In the case of OS assembler language, only the basic branch and branch-and-link instructions are
implemented but macros that simulate the first three structures are available.

The first two structures are sufficient to implement any “proper” program (that is, with one entry point
and one exit) if its blocks of code are suitably ordered. It is assumed that the structures may be nested to
any depth. The technique of writing programs using only these structures for branching is known as
"structured programming".

The standard structured programming figures have been implemented for the assembler language
programmer through the following five sets of related macros.
v The IF macro set:

IF
ELSE (optional)
ELSEIF (optional)
ENDIF

v The DO macro set:
DO
DOEXIT (optional)
ITERATE (optional)
ASMLEAVE (optional)
ENDDO

v The CASE macro set:
CASENTRY
CASE (one must be present)
ENDCASE

v The SEARCH macro set:
STRTSRCH
EXITIF
ORELSE
ENDLOOP
ENDSRCH

v The SELECT macro set:
SELECT

© Copyright IBM Corp. 1992, 2013 11

WHEN
OTHRWISE (optional)
ENDSEL

v The ASMMREL macro set:
ASMMREL

Accessing the macros
To use these macros:
v Ensure the macro library provided as part of the Toolkit Feature is included; for z/OS, in the SYSLIB

concatenation; for CMS, in the GLOBAL MACLIB command; or for z/VSE, in the LIBDEF SOURCE
search chain.
For z/OS, the default SMP/E target library is hlq.SASMMAC2.
For z/VSE, the default sublibrary is PRD2.PROD.
For CMS, the default location is userid P696234H disk 29E macro library ASMSMAC MACLIB.

v Add the following statement to the program:
COPY ASMMSP

Add this statement prior to any line containing a macro. You can add this statement either directly by
updating the actual file or by using the PROFILE facility of HLASM. This COPY statement must be
inserted before any use is made of these macros.
All the ‘visible’ macro names are set up by SETC statements in member ASMMNAME, which is copied
and used by ASMMSP. If there is a collision, or you like to use different names for any of the macros,
change the statements in ASMMNAME.

The following restrictions apply when using these macros:
v The macros generate labels of the following format:

#@LBn DC 0H

where n is a sequence number starting at 1.
Do not use these names for any labels within the user's program.

v Many macros accept a numeric or mnemonic value representing a condition code mask, either as a
positional operand or as the CC= keyword operand. The values supplied for numeric operands are not
condition code settings (0, 1, 2, or 3) but are the condition code mask values used in conditional branch
instructions (values 1 to 14).

v The macros use a set of global macro variables for processing. The definitions for these variables are in
ASMMGBLV (this is a member in the supplied library). These macro variable names must not be used
in any other macros.

v The following words are reserved keywords and must not be used for operands or instructions: AND,
OR, ANDIF, ORIF.

v It is strongly suggested that you do not use the mnemonic keywords in Table 3 on page 14 as labels or
operands.

The ASMMREL macro
By default, the structured programming macros generate based branch on condition instructions. You can
get the macros to generate branch relative on condition instructions using the ASMMREL macro.

The ASMMREL macro can be used as follows:
ASMMREL ON

12 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

This macro sets a global variable that causes all subsequent macro expansions to use branch relative
instructions. The operand is optional and the default is ON. To revert to using base displacement
branches then insert the following statement in the program:

ASMMREL OFF

Using ASMMREL causes the following:
1. The DO macro generates LHI (to initialize registers) where it can.
2. DO loop terminator is generated according to:

ASMMREL OFF - one of: BC BXH BXLE BCT BCTR
ASMMREL ON - one of: BRC BRXH BRXLE BRCT BCTR

3. The CASENTRY macro generation alters the contents of R0.

The IF macro set
The IF macro set implements the IF THEN ELSE program figure. The flowchart for this figure is:

┌──────┐
│ │

┌───→───┤ F1 ├────→────┐
│true │ │ │
│ └──────┘ │

┌──┴──┐ ┌──┴──┐
│ │ │ │

────→───┤IF(P)│ │ENDIF├─────→
│ │ │ │
└──┬──┘ └──┬──┘

│ ┌──────┐ │
│false │ │ │
└───→───┤ F2 ├────→────┘

│ │
└──────┘

In this figure, the test of the predicate p is represented by the IF macro, which determines whether
process F1 or F2 is to be executed. The exit path from the macro is represented by the terminator ENDIF
macro. The general IF macro set is written:

In the IF examples that follow, the parentheses surrounding the predicate are optional.
IF p THEN

Code for F1
ELSE

Code for F2
ENDIF

If the ELSE is not used, the flowchart is reduced to one that does not contain function F2 and is written:
IF p THEN

Code for F1
ENDIF

The format of the predicate p may take one of the forms discussed in Table 2. In each form the keywords
AND, OR, ANDIF, and ORIF are optional. THEN is a comment and must be preceded by one or more
spaces if used.

All these forms of the predicate p may be used in the DOEXIT, EXITIF, and WHEN macros.

Table 2. Predicate values and connector/terminator values

Predicate Values Connector/Terminator

numeric condition code mask (1 to 14) condition mnemonic instruction,
parm1, parm2, condition compare-instruction, parm1, condition, parm2

AND OR ANDIF ORIF

Chapter 2. Using structured programming macros 13

Table 2. Predicate values and connector/terminator values (continued)

Predicate Values Connector/Terminator

Note: Do not use the connectors AND, OR, ANDIF, and ORIF as program labels.

IF macro option A

�� IF (condition) ��

Option A tests the previously set condition code. It uses the Extended Branch Mnemonics for the branch
instruction or the numeric condition code masks to indicate the condition. Table 3 following the examples
shows the mnemonics and their complements.

IF (H) THEN
Code for F1

ELSE
Code for F2

ENDIF

produces this result:
IF (H) THEN

BC 15-2,#@LB1
Code for F1

ELSE
BC 15,#@LB3

#@LB1 DC 0H
Code for F2

ENDIF
#@LB3 DC 0H

The same example, using a numeric condition code mask, is:
IF (2) THEN

Code for F1
ELSE

Code for F2
ENDIF

This produces the same code.

Table 3. Mnemonics and complements

Case Condition Mnemonics Meaning Complement

After compare instructions H, GT L, LT E, EQ high, greater than low, less
than equal

NH, LE, NL, GE, NE

After arithmetic
instructions

P, M, Z, O plus, minus, zero, overflow NP, NM, NZ, NO

After test under mask
instructions

O, M, Z ones, mixed, zeros NO, NM, NZ

Notes:

1. Do not use the mnemonics and complement symbols as program labels.

2. The mnemonics shown in the table can be in lowercase.

14 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

IF macro option B

�� IF (instruction mnemonic,parm1,parm2,condition) ��

Option B needs all four parameters.

The instruction mnemonic is any other than a compare, that sets the condition code. (Use option A if the
condition code has been set previously.)

The parameters parm1 and parm2 are the two fields associated with the instruction.

Condition is the value that the condition code mask must assume for the THEN clause to be executed. The
condition parameter is either one of the condition mnemonics given in Table 3 on page 14, or a numeric
condition code mask.

This example of option B:
IF (TM,BYTE,X’80’,Z) THEN

Code for F1
ELSE

Code for B2
ENDIF

produces:
IF (TM,BYTE,X’80’,Z) THEN

TM BYTE,X’80’
BC 15-8,#@LB1
Code for F1

ELSE
BC 15,#@LB3

#@LB1 DC 0H
Code for B2

ENDIF
#@LB3 DC 0H

Option B also provides for three-operand instructions such as those that are available on the System/370.
For example:

IF (ICM,R1,M3,B2(D2),4)

produces:
ICM R1,M3,B2(D2)

BC 15-4,L1

In all option B formats, the instruction is coded first, followed by the appropriate operands in the same
order as used in open code, and followed by the condition operand.

IF macro option C

�� IF (compare instruction,parm1,condition,parm2) ��

Chapter 2. Using structured programming macros 15

Option C needs all four parameters.

Any compare instruction is valid. However, with a compare instruction, the condition mnemonic appears
between parm1 and parm2, instead of after both of them as in option B.

In all cases, parm1 and parm2 must agree, as if you were writing the instruction in assembler language.

The condition parameter is either condition mnemonic from Table 3 on page 14, or a numeric condition
code mask.

This example of option C:
IF (CLI,0(2),EQ,X’40’) THEN

Code for F1
ELSE

Code for F2
ENDIF

produces:
IF (CLI,0(2),EQ,X’40’) THEN

CLI 0(2),X’40’
BC 15-8,#@LB1
Code for F1

ELSE
BC 15,#@LB3

#@LB1 DC 0H
Code for F2

ENDIF
#@LB3 DC 0H

Option C also provides for three-operand compare instructions. An example is:
IF (CLM,R1,M3,NE,B2(D2))

In all option C formats, the instruction is coded first, followed by the appropriate operands in the same
order as used in open code, with the condition code mask operand in the next to last position.

IF macro option D

�� IF CC=condition_code ��

Where:

condition_code
Numeric condition code mask

Option D tests the previously set condition code. It uses the numeric condition code mask to indicate the
condition.

The following example:
IF CC=2 THEN

Code for F1
ELSE

Code for F2
ENDIF

16 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

produces:
IF CC=2 THEN

BC 15-2,#@LB1
Code for F1

ELSE
BC 15,#@LB3

#@LB1 DC 0H
Code for F2

ENDIF
#@LB3 DC 0H

Note: This form of the IF macro cannot be used with Boolean operators.

IF macros with Boolean operators
All the options described in the preceding sections can be combined into longer logical expressions using
Boolean operators AND, OR, ANDIF, and ORIF. (These are reserved keywords and cannot be used as
operands of instructions.) A NOT operator has not been implemented since a complement exists for each
of the alphabetic condition mnemonics described previously.

All logical expressions are scanned from left to right. When the AND and OR connectors are used, the
code generated is such that as soon as the expression can be verified as either true or false the
appropriate branch to process either the code for F1 or the code for F2 is taken without executing the
remaining tests. Statements that are continued onto more than one line must have a non-space character
in the continuation indicator column (normally column 72) of all statements except the last. Continued
statements must have a non-space character in the continuation column (normally column 16)

This example:
IF (10),OR, X

(AR,R2,R3,NZ),AND, X
(ICM,R1,M3,B2(D2),4) THEN

Code for F1
ELSE

Code for F2
ENDIF

produces:
IF (10),OR, X

(AR,R2,R3,NZ),AND, X
(ICM,R1,M3,B2(D2),4) THEN

BC 10,#@LB2
AR R2,R3
BC 15-7,#@LB1

ICM R1,M3,B2(D2)
BC 15-4,#@LB1

#@LB2 DC 0H
Code for F1

ELSE
BC 15,#@LB3

#@LB1 DC 0H
Code for F2

ENDIF
#@LB3 DC 0H

If the condition code mask setting is 10 upon entering the IF code, the program immediately branches to
the F1 code. If it is not 10, and if the next condition code setting is such that the desired relation is not
true, the branch is made around the third test to the F2 code. This is done since the AND condition
cannot be met if the second relation is false.

The ANDIF and ORIF are used to give a parenthetical grouping capability to the logical expressions. The
use of either of these two as connectors of logical groupings, the use of AND or OR indicates a closing

Chapter 2. Using structured programming macros 17

parenthesis on the preceding group and an opening parenthesis on the one following. Therefore, if the
previous example is modified by replacing the AND by an ANDIF, this means that either the first or
second condition must be true as well as the third one in order to execute F1.

An example of this:
IF (10),OR, X

(AR,R2,R3,NZ),ANDIF, X
(ICM,R1,M3,B2(D2),4) THEN
Code for F1

ELSE
Code for F2

ENDIF

produces:
IF (10),OR, X

(AR,R2,R3,NZ),ANDIF, X
(ICM,R1,M3,B2(D2),4) THEN

BC 10,#@LB2
AR R2,R3
BC 15-7,#@LB1

#@LB2 DC 0H
ICM R1,M3,B2(D2)

BC 15-4,#@LB1
Code for F1

ELSE
BC 15,#@LB4

#@LB1 DC 0H
Code for F2

ENDIF
#@LB4 DC 0H

For a better illustration of the effect of the ANDIF and ORIF usage, the examples which follow use capital
letters to indicate the conditions that are tested.

If you write
A OR B AND C

the implied grouping is A OR (B AND C).

If you write
A OR B ANDIF C

the grouping is (A OR B) AND C.

The ORIF may be similarly used:
A AND B ORIF C OR D

is interpreted as (A AND B) OR (C OR D).

The ELSEIF macro
The ELSEIF macro is an optional part of the IF macro set. It provides the means for a series of checks,
where a function is executed once the predicate condition has been satisfied. The flowchart for an IF
including an ELSEIF is:

┌────────────┐ True ┌────┐
────→┤ IF(P1) ├──────→┤ F1 ├──→──────────┐

└─────┬──────┘ └────┘ │
│ ↓
│ False │
↓ │

┌─────┴──────┐ True ┌────┐ │
│ ELSEIF(P2) ├──────→┤ F2 ├──→──────────┤
└─────┬──────┘ └────┘ │

│ False ↓

18 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

↓ │
┌─────┴──────┐ True ┌────┐ │
│ ELSEIF(P3) ├──────→┤ F3 ├──→──────────┤
└─────┬──────┘ └────┘ │

│ False ↓
↓ │
│ │
. .
. .
↓ .

┌─────┴──────┐ True ┌────┐ │
│ ELSEIF(Pn) ├──────→┤ Fn ├──→──────────┤
└─────┬──────┘ └────┘ │

│ False │
↓ ↓

┌─────┴──────┐ ┌────┐ ┌───┴─┐
│ ELSE ├──────→┤Code├────────→┤ENDIF├─→
└────────────┘ └────┘ └─────┘

The predicate for the ELSEIF macro is one of the forms permitted for the IF macro.

This example:
if (clc,a,eq,b)

mvc a,d
elseif (clc,e,eq,f)

mvc g,h
elseif (clc,g,eq,h)

mvc i,k
endif

produces:
if (clc,a,eq,b)

+ clc a,b
+ BC 5-8,#@LB1

mvc a,d
elseif (clc,e,eq,f)

+ BC 15,#@LB3
+#@LB1 DC 0H
+ clc e,f
+ BC 15-8,#@LB4

mvc g,h
elseif (clc,g,eq,h)

+ BC 15,#@LB6
+#@LB4 DC 0H
+ clc g,h
+ BC 15-8,#@LB7

mvc i,k
endif

+#@LB7 DC 0H
+#@LB6 DC 0H
+#@LB3 DC 0H

The DO macro set
The flowchart represented by this set depends on the keywords used with the predicate p. If the UNTIL
or the indexing group of key words (FROM, TO, BY) is used, the flowchart is:

┌──────────←───────────┐
│ │false
│ ↑
↓ ┌─────┐ ┌──┴──┐
│ │ │ │ │

───→──┴──→───┤ F ├──→───┤IF(P)├──────→
│ │ │ │ true
└─────┘ └─────┘

Chapter 2. Using structured programming macros 19

If the WHILE keyword is specified, the flowchart is:
┌─────┐
│ │

┌───←───┤ F ├──────←──────┐
│ │ │ │true
│ └─────┘ │
↓ ↑
│ ┌──┴──┐
│ │ │

──→──┴──────────────→─────────┤IF(P)├─────→
│ │false
└─────┘

The general DO macro set is written as:
DO P

Code for F
ENDDO

The DO macro accepts zero or one positional parameter and six possible keywords. The positional
parameter may be ONCE, INF, BXH, or BXLE. The keywords are LABEL, FROM, TO, BY, WHILE, and
UNTIL. The FROM, TO, and BY keywords form an indexing group that specifies ranges and increments
when indexing through a loop. They indicate loop termination tests, which are made after execution of
the function code F, and the determination of whether to repeat the loop is made by one of the four
indexing instructions: BXH, BXLE, BCT, or BCTR. If an indexing instruction is not given explicitly as a
positional parameter, one is derived from the other values given. Infinite looping is also permitted
through use of the INF positional parameter.

The function of the UNTIL keyword is like that of the loop terminator, except that the determination of
whether to repeat the function code F depends upon the result of any condition code setting instruction.
It may not be used with the indexing group. See also “The DO indexing group.”

The WHILE keyword, on the other hand, generates a test prior to entering the function code of the loop.
It may be used with either the indexing group or the UNTIL keyword to provide tests at both initiation
and termination of the function code.

The DO macro accepts a name for the DO group from either the name field or the LABEL keyword
parameter, with the former taking precedence. This label may be used in the DOEXIT, ITERATE, or
ASMLEAVE macros to specify which DO group is iterated or left.

The following combinations of keywords are valid with the DO macro:
FROM, TO, BY
FROM, TO, BY, WHILE
WHILE, UNTIL

In all cases, the structure must be terminated by the ENDDO macro.

The DO indexing group
The indexing group permits five types of counting and testing to be performed. Each different
requirement for counting and testing has a corresponding set of keywords and values, and results in the
generation of appropriate loop initialization and termination instructions. The five variations are
described in the following paragraphs and are summarized in Table 4 on page 21. The tests to determine
which variation is to be used are performed in the order described in Table 3 on page 14.

In the indexing group, each of the three keywords is permitted to indicate a register designation and an
optional value. Thus, an indexing DO statement could appear as:

DO FROM=(Rx,i),TO=(Ry+1,j),BY=(Ry,k)

20 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

if all keywords in the group were used.

The format of the keywords is keyed to the BXH and BXLE indexing instructions, and the restrictions on
the use of these instructions are carried over into the macros. Therefore, if the BY register Ry is an
even-numbered register, then the TO register must be Ry+1. If the BY register Ry is an odd-numbered
register, then the TO register must be the same register, and hence the TO and BY values (j and k) must
be identical.

DO loop terminator generation
This table summarizes the various instructions that are generated to terminate DO loops. The types of
loops are discussed following the table, including examples.

Table 4. DO loop terminator generation

Type Keywords1 Other conditions Result

Simple DO None ONCE or omitted Null

Infinite loop Neither FROM WHILE nor
UNTIL

INF parameter BC 15

Explicit specification FROM, plus TO or BY BXH parameter BXLE
parameter

BXH BXLE

Counting FROM (only) Two values Three values BCT BCTR

Backward indexing FROM, TO and BY FROM and TO numeric FROM
value greater than TO value

BXH

Backward indexing FROM BY BY numeric and less than zero BXH

Forward indexing Any combination not covered
in the above cases

BXLE

Note:

1. The LABEL keyword may be used on any DO macro without affecting the loop terminator.

Simple DO
You may bracket a group of statements with a simple DO and ENDDO combination. No executable
statements are generated, only the labels that allow the use of ITERATE and ASMLEAVE macros.

A simple DO is coded by either using the ONCE parameter:
DO ONCE

Code for DO group
ENDDO

or by omitting all parameters:
DO ,

Code for DO group
ENDDO

This will generate the same code:
DO ,

+#@LB1 DC 0H
Code for DO group

ENDDO

Infinite loop
If you wish to execute a loop until some external terminating event takes place (for example, an end of
file), then you may do so by specifying the INF positional parameter.

Chapter 2. Using structured programming macros 21

Thus, coding:
DO INF

Code for F
ENDDO

produces:
DO INF

#@LB2 DC 0H
Code for F

ENDDO
BC 15,#@LB2

In order to generate an infinite loop, no FROM, WHILE, or UNTIL keywords can be present. TO and BY
keywords, if present, are ignored.

Branching to the ENDDO
The ITERATE macro causes a branch to the point prior to the ENDDO macro associated with the active
DO macro. If a label is specified, then the ITERATE branches to the point prior to the ENDDO macro
associated with the DO macro with the label. Here is the flowchart for this structure:

┌─←───←─┐Not Done
│ ┌──Loop Body───┐ ↑

┌──┐ ┌────┐ ↓ ┌─────┐True : : ┌─────┐False┌──┴──┐Done ┌─────┐
│DO├─→│Init├─→┴─→┤WHILE├───→ : some code :──→┬─→│UNTIL├────→┤Count├─→┬─→┤ENDDO│
└──┘ └────┘ │Test │ : ┌──────────┐ : ↑ │Test │ │Test │ ↑ └─────┘

└──┬──┘ : │ ITERATE ├────→┤ └──┬──┘True └─────┘ │
│False : └──────────┘ : │ └────────────────→┤
│ └──────────────┘ └────→ outer ENDDO │
└──────────────────────────→───────────────────────→┘

In the following example, iterate outer creates a branch from the inner DO loop to the point just before
the outer ENDDO, associated with the labeled DO loop, while the iterate without a label creates a
branch to just before the ENDDO of the inner DO loop:

outer do while=2
do while=4

mvc a,d
if (clc,a,eq,b)

iterate outer
else

iterate
endif

enddo
enddo

produces:
outer do while=2

+outer DC 0H
+ BC 15,#@LB2
+#@LB3 DC 0H

do while=4
+ BC 15,#@LB7
+#@LB8 DC 0H

mvc a,d
if (clc,a,eq,b)

+ clc a,b
+ BC 15-8,#@LB11

iterate outer
+ BC 15,#@LB2

else
+ BC 15,#@LB13
+#@LB11 DC 0H

iterate

22 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

+ BC 15,#@LB7
endif

+#@LB13 DC 0H
enddo

+#@LB7 DC 0H
+ BC 4,#@LB8

enddo
+#@LB2 DC 0H
+ BC 2,#@LB3
+#@LB1 DC 0H

Leaving a nested DO
It is possible to leave a nested DO macro by specifying a label on the DO macro and the same label as a
parameter on a contained ASMLEAVE macro. Here is the flowchart for this structure:

┌─←───←─┐Not Done
│ ┌──Loop Body───┐ ↑

┌──┐ ┌────┐ ↓ ┌─────┐True : : ┌─────┐False┌──┴──┐Done ┌─────┐
│DO├─→│Init├─→┴─→┤WHILE├───→ : some code :─→──│UNTIL├────→┤Count├─→┬─→┤ENDDO│
└──┘ └────┘ │Test │ : : │Test │ │Test │ ↑ └─────┘

└──┬──┘ : ┌──────────┐ : └──┬──┘True └─────┘ │
│ False : │ ASMLEAVE ├───→─┬───┴────────────────→┤
│ : └──────────┘ : └──→ outer ENDDO │
↓ └──────────────┘ │
└──────────────────────────→─────────────────────→┘

If a label is not specified, then the current macro is exited.

In the following example, asmleave loop breaks from the inner DO loop to the end of the outer (labeled)
DO loop, while the asmleave without a label just breaks to the end of the current DO loop:

loop do while=2
do while=4

mvc a,d
if (clc,a,eq,b)

asmleave loop
else

asmleave
endif

enddo
enddo

produces:
loop do while=2
+loop DC 0H
+ BC 15,#@LB2
+#@LB3 DC 0H

do while=4
+ BC 15,#@LB7
+#@LB8 DC 0H

mvc a,d
if (clc,a,eq,b)

+ clc a,b
+ BC 15-8,#@LB11

asmleave loop
+ BC 15,#@LB1

else
+ BC 15,#@LB13
+#@LB11 DC 0H

asmleave
+ BC 15,#@LB6

endif
+#@LB13 DC 0H

enddo
+#@LB7 DC 0H

Chapter 2. Using structured programming macros 23

+ BC 4,#@LB8
+#@LB6 DC 0H

enddo
+#@LB2 DC 0H
+ BC 2,#@LB3
+#@LB1 DC 0H

Explicit specification
If you want to specify an explicit BXH or BXLE loop terminator, you may do so by including it in the
form of a positional parameter:

DO BXH,FROM=(Rx,i),TO=(Ry+1,j),BY=(Ry,k)
Code for F

ENDDO

generating, for example:
DO BXH,FROM=(R1,20),TO=(R3,100),BY=(R2,4)

LA R1,20
LA R3,100
LA R2,4

#@LB2 DC 0H
* Code for F

ENDDO
#@LB3 DC 0H

BXH R1,R2,#@LB2

The FROM and either the BY or TO keywords must be present in order to provide register designations
required for the generation of the BXH or BXLE instruction. The register specified for the BY keyword is
used unless it is not present, in which case the one for the TO keyword is used.

Counting
This case applies when a count is to be decremented by 1 each time, and the loop is to be terminated
when the count reaches zero. This is achieved by specifying just the FROM keyword. In the situation
where only two parameters are used, a BCT loop terminator is generated.

For example:
DO FROM=(Rx,number)

Code for F
ENDDO

produces:
DO FROM=(R15,3)

LA R15,3
#@LB2 DC 0H

Code for F
ENDDO

#@LB3 DC 0H
BCT R15,#@LB2

For a slightly shorter loop, write the FROM keyword with three parameters to designate an additional
register. In this case, a BCTR is generated as the loop terminator.

For example:
DO FROM=(Rx,=A(TEST),Ry)

Code for F
ENDDO

produces:

24 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

DO FROM=(R15,=A(LIMIT),R14)
LA R14,#@LB2
L R15,=A(LIMIT)

#@LB2 DC 0H
Code for F

ENDDO
#@LB3 DC 0H

BCTR R15,R14

If no value appears in the FROM keyword, the load instruction is not generated.

Backward indexing
To index backward through an array (from high to low storage addresses), you need a BXH test, to end
the loop when the lowest address is reached. This may be achieved in two ways.

The first way uses all three keywords, with numeric values for the FROM and TO values i and j, where
the FROM value i is greater than the TO value j. Although no test on the BY value k is performed, it
should be negative. Also, while the FROM and TO values i and j need not be positive, they are assumed
to be negative numerics if and only if a leading minus sign occurs.

Thus, with i greater than j:
DO FROM=(Rx,6),TO=(Ry+1,-6),BY=(Ry,-4)

Code for F
ENDDO

produces:
DO FROM=(R1,6),TO=(R3,-6),BY=(R2,-4)

LA R1,6
LH R3,=H’-6’
LH R2,=H’-4’

#@LB2 DC 0H
Code for F
ENDDO

#@LB3 DC 0H
BXH R1,R2,#@LB2

The other way is to omit the TO keyword. The BY value k is a negative numeric (it has a leading minus
sign), indicating backward indexing. Although no test on the register number Ry is performed, it must
have an odd value.

When k is negative, then:
DO FROM=(Rx,=A(END-START)),BY=(Ry,-2)

Code for F
ENDDO

produces:
DO FROM=(R1,=A(END-START)),BY=(R3,-2)

L R1,=A(END-START)
LH R3,=H’-2’

#@LB2 DC 0H
Code for F

ENDDO
#@LB3 DC 0H

BXH R1,R3,#@LB2

Chapter 2. Using structured programming macros 25

Forward indexing
To index forward through an array (from low to high storage addresses), you need a BXLE test, to end
the loop when the highest address is reached. If no explicit terminator is specified, and if none of the
preceding combinations of keywords and values exist, then forward indexing is assumed, and a BXLE
terminator is generated.

For example:
DO FROM=(Rx,1),TO=(Ry+1,10),BY=(Ry,2)

Code for F
ENDDO

produces:
DO FROM=(R1,1),TO=(R3,10),BY=(R2,2)

LA R1,1
LA R3,10
LA R2,2

#@LB2 DC 0H
Code for F

ENDDO
#@LB3 DC 0H

BXLE R1,R2,#@LB2

Register initialization
If you wish to load a register yourself, or the register remains loaded from a previous operation, then
omitting the corresponding value field prevents generation of a register load instruction. If you supplied
one or more of the values i, j, or k, thus indicating that you want the macro processor to generate the L,
LH, LR, or LA instructions, the following rules apply.

For a positive number greater than zero and less than 4096, an LA is generated. The L or LH instruction
is generated when a value is identified as a negative number (determined by the presence of a leading
minus sign), or a positive number greater than 4095. The value is also converted to a literal, thus
generating =F’number’ or =H’number’ as appropriate, and is substituted as the second operand of the load
instruction.

If any value is zero, an SR to clear the designated register is generated.

In all other cases (non-numeric or undefined values, as indicated by the type attribute of the macro), an L
instruction is generated. In this case, whatever is present for the value is directly substituted as the
second operand of the instruction. If it is a literal, it is your responsibility to supply the equal sign.

This table summarizes the rules followed in initializing registers.

Table 5. Generated instructions for given values

Value given Instruction generated

None None
Zero SR Rx,Rx
0 ≤ number < 4096 LA Rx,number
-32767 ≤ number < 0, or 4096 < number < 32768 LH Rx,=H’number’1

number < -32767, or number ≥ 32768 L Rx,=F’number’
(Register number) LR Rx,Register number
Other Rx,Other

1 This generates LHI Rx,number if branch relatives are allowed.

26 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

The UNTIL and WHILE keywords
The test generated by the UNTIL keyword, as with those generated by the indexing group, is used at the
loop termination. The test generated by the WHILE keyword, on the other hand, tests whether to enter a
loop at all prior to its execution. For both keywords, the parameterization is identical to that of the IF
macro. The UNTIL and WHILE operands accept compound predicates in the same format as used on the
IF statement, with the exception that the CC= keyword operand is not allowed.

The DO WHILE example:
DO WHILE=(TM,FLAGS,X’80’,O)

Code for F
ENDDO

produces:
DO WHILE=(TM,FLAGS,X’80’,O)

BC 15,#@LB2
#@LB3 DC 0H

Code for F
ENDDO

#@LB2 DC 0H
TM FLAGS,X’80’
BC 1,#@LB3
BC 1,L1

The DO UNTIL is coded in the same manner:
DO UNTIL=(TM,FLAGS,X’80’,O)

Code for F
ENDDO

and produces:
DO UNTIL=(TM,FLAGS,X’80’,O)

#@LB2 DC 0H
Code for F

ENDDO
#@LB3 DC 0H

TM FLAGS,X’80’
BC 15-1,#@LB2

It is possible to create a compound DO with both UNTIL and WHILE parameters on the same macro. For
example:

DO WHILE=(SRP,AMOUNT,64-3,5,M),UNTIL=10
Code for F

ENDDO

produces:
DO WHILE=(SRP,AMOUNT,64-3,5,M),UNTIL=10

#@LB2 DC 0H
SRP AMOUNT,64-3,5
BC 15-4,#@LB1
Code for F

ENDDO
#@LB5 DC 0H

BC 15-10,#@LB2
#@LB1 DC 0H

The operand formats for the WHILE and UNTIL keywords are the same as those of the IF-type macros
and can be used with Boolean operators as in the following example:

Chapter 2. Using structured programming macros 27

DO WHILE=(CLI,WORD1,EQ,2,OR,CLI,WORD1,EQ,4), X
UNTIL=(CLI,WORD1,EQ,1,OR,CLI,WORD1,EQ,3)

Code for F
ENDDO

produces (with ASMMREL ON in effect):
DO WHILE=(CLI,WORD1,EQ,2,OR,CLI,WORD1,EQ,4), X

UNTIL=(CLI,WORD1,EQ,1,OR,CLI,WORD1,EQ,3)
#@LB2 DC 0H

CLI WORD1,2
BRC 8,#@LB4
CLI WORD1,4
BRC 15-8,#@LB1

#@LB4 DC 0H
Code for F

ENDDO
#@LB5 DC 0H

CLI WORD1,1
BRC 8,#@LB7
CLI WORD1,3
BRC 15-8,#@LB2

#@LB7 DC 0H
#@LB1 DC 0H

Looping with DOEXIT and EXITIF
To obtain the equivalent capability of logical expressions for looping operations, the DOEXIT or EXITIF
macro may also be used, within their respective sets. For a Boolean WHILE, the above macros are placed
immediately following the DO or STRTSRCH while for the UNTIL the placement of these macros is
immediately before the ENDDO or ENDLOOP.

EXITIF can only be coded within a STRTSRCH structure. Multiple EXITIFs are allowed.

DOEXIT must be placed within a DO macro set. In the following example the DOEXIT macro statement
causes the generation of a branch instruction to a label at the ENDDO macro statement.

do from=2
if (clc,a,eq,b)
mvc a,d
doexit (2)
else

mvc g,h
endif

enddo

The DOEXIT macro allows specification of which DO group to exit by the DO keyword parameter. If the
DO keyword is not specified then the DOEXIT will exit from the innermost DO group.

Here is an example where the DOEXIT is exiting from a DO labeled MAINLOOP (in this case where
there is only one DO loop, the use of the DO keyword is not required):
* Infinite DO

DO INF,LABEL=MAINLOOP
+MAINLOOP DC 0H
+#@LB39 DC 0H

l 1,fullword
DOEXIT DO=MAINLOOP,(LTR,1,1,z)

+ LTR 1,1
+ BC 8,#@LB38

mvc i,k
ENDDO

+ BC 15,#@LB39
+#@LB38 DC 0H

28 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

The SEARCH macro set
The SEARCH macro set is provided to allow more complex loops to be coded. All of the operands noted
above for DO loops may also be used on the STRTSRCH macro.

The flowchart for the SEARCH macro set is:
┌─────────────────←───────────────────────────┐
↓ ↑ not finished
│ ┌────┴────┐
│ ┌───┐ ┌───────────┐ false ┌───┐ │test for │ ┌───┐

──────→┴─→─┤ A ├─→─┤ EXITIF (x)├─→──────┤ C ├─→─┤end loop ├─→─┤ D ├─→─┬──→
STRTSRCH └───┘ └─────┬─────┘ └───┘ │condition│ └───┘ ↑

↓ true ORELSE └─────────┘ ENDSRCH │
┌──┴──┐ ENDLOOP │
│ B ├─────────────────────────────────────→───┘
└─────┘

The general structure of the SEARCH macro set is:
STRTSRCH (any DO-type loop operands)

Process Code A
EXITIF (any IF-type operands)

Process Code B
ORELSE

Process Code C
ENDLOOP

Process Code D
ENDSRCH

Multiple EXITIFs are permissible. However, for each EXITIF, an ORELSE must appear at some point in
the code before the next EXITIF. However, the last ORELSE (the one before the ENDLOOP macro) is
optional.

For example:
STRTSRCH UNTIL=(TM,0(R4),X’55’,NO),WHILE=(CH,R9,LT,=H’58’)

Process A
EXITIF CC=8

Process B
ORELSE

Process C
ENDLOOP

Process D
ENDSRCH

produces:
STRTSRCH UNTIL=(TM,0(R4),X’55’,NO),WHILE=(CH,R9,LT,=H’58’)

#@LB3 DC 0H
CH R9,=H’58’
BC 15-4,#@LB2
Process A

EXITIF CC=8
BC 15-8,#@LB9
Process B

ORELSE
BC 15,#@LB1

#@LB9 DC 0H
Process C

ENDLOOP
#@LB6 DC 0H

TM 0(R4),X’55’
BC 15-14,#@LB3

Chapter 2. Using structured programming macros 29

#@LB2 DC 0H
Process D

ENDSRCH
#@LB1 DC 0H

Another example:
STRTSRCH WHILE=(CLM,R2,M1,GE,D2(B2)),UNTIL=P

* No Process A
EXITIF Z,AND, X

LTR,R2,R3,O,ORIF, X
(CLC,DEC(L,B),EQ,=C’WORD’),AND, X
NP
Process B

ORELSE
Process C

EXITIF CC=5
Process D

ENDLOOP
Process E

ENDSRCH

produces:
STRTSRCH WHILE=(CLM,R2,M1,GE,D2(B2)),UNTIL=P

#@LB3 DC 0H
CLM R2,M1,D2(B2)
BC 15-11,#@LB2

* No Process A
EXITIF Z,AND, X

LTR,R2,R3,O,ORIF, X
(CLC,DEC(L,B),EQ,=C’WORD’),AND, X

NP
BC 15-8,#@LB9
LTR R2,R3
BC 1,#@LB10

#@LB9 DC 0H
CLC DEC(L,B),=C’WORD’
BC 15-8,#@LB11
BC 15-13,#@LB11

#@LB10 DC 0H
Process B

ORELSE
BC 15,#@LB1

#@LB11 DC 0H
Process C

EXITIF CC=5
BC 15-5,#@LB12
Process D

ENDLOOP
BC 15,#@LB1

#@LB12 DC 0H
#@LB6 DC 0H

BC 15-2,#@LB3
#@LB2 DC 0H

Process E
ENDSRCH

#@LB1 DC 0H

The CASE macro set
The CASE macro set selects one of a set of functions for execution, depending on the value of an integer
found in a specified register. The determination of which of the functions is to be executed involves the
use of either an address vector (sequence of addresses) or a branch vector (sequence of branch
instructions).

30 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

The flowchart for the CASE program figure is:
↓

┌────┴────┐
│ │
│ IF(i) │
│ │
└────┬────┘

↓ ┌─────┐
│i=1 │ │
├─────→────┤ F1 ├─→───┐
│ │ │ │
│ └─────┘ │
↓ │
│ ┌─────┐ │
│i=2 │ │ │
├─────→────┤ F2 ├─→───┼───→
│ │ │ │
│ └─────┘ │
↓ │
│ ┌─────┐ │
│i=m │ │ │
└─────→────┤ Fm ├─→───┘

│ │
└─────┘

The macro is written like this:
CASENTRY Rx,POWER=n,VECTOR=listtype

CASE a,d
Code for F1

CASE b,c
Code for F2

CASE f
Code for F3
.
.
.

CASE t
Code for Fm

ENDCASE

Notes:

1. listtype can be either B or BR.
2. Statements between the CASENTRY macro and the first CASE statement are assembled, but not

executed. Statements should not be placed between CASENTRY and CASE.
3. An integer cannot be used more than once in a CASENTRY structure.

Where the case numbers a, b, ..., t are either members of a set of integers greater than zero, or nonzero
multiples of a power of 2 (for example, 4, 12, and 16). Zero (0) is not a valid case number. Rx is a
positional operand that specifies a general register containing the case number. The keyword operands
POWER and VECTOR are optional.

The operand POWER=n (where n is an integer) refers to a power of 2 and indicates that the case
numbers are multiples of that power of 2. Thus, POWER=3 indicates that the case numbers are multiples
of 8.

The default value for POWER is 0 which indicates that the case numbers are positive integers that are
necessarily powers of 2.

The operand VECTOR=B or VECTOR=BR indicates that a branch vector is to be generated rather than an
address vector. Fewer instructions are generated for branch vectors. However, you must be sure that the
branch vector table is addressable by the initialization code, that the code for each of the cases is

Chapter 2. Using structured programming macros 31

addressable, and that the code after the ENDCASE macro is addressable by a current base register. If
branch relative instructions are being used, then the CASENTRY macro will ignore the VECTOR
keyword, will always generate a branch table, and may use register 0 in the generated code.

Register 0 may not be used as the case value register (Rx).

It is your responsibility to load the desired case number into Rx and to ensure that it is within the
indicated range. The macro expansion then adjusts this value according to the POWER value (whether
explicitly or implicitly specified), so that the correct CASE is selected. The content of the register
indicated in the CASENTRY statement is destroyed and is only required during the execution of the
initial code generated by the macro expansion. Hence, it is possible to use the same register for other
purposes within the function code for any CASEs.

This example of a CASE macro uses case numbers 1, 2, 3, 4, and 5:
CASENTRY Rx

CASE 2,1,4
Code for F1

CASE 5
Code for F2

ENDCASE

This is interpreted to mean that if a 1, 2, or 4 is present in general register Rx, the code for F1 is executed.
If a 5 is present, the code for F2 is executed. If a value of 3 is in Rx, no function code is to be executed. In
all cases, control is then to be passed to the code after the ENDCASE macro.

The example produces:
Rx equ 3

CASENTRY RX
+ SLA RX,2-0
+ A RX,#@LB3
+ L RX,0(,RX)
+ BCR 15,RX

+#@LB3 DC A(#@LB1)
CASE 2,1,4

+#@LB4 DC 0H
* code for F1

CASE 5
+ L RX,#@LB1
+ BCR 15,RX
+#@LB5 DC 0H
* code for F2

ENDCASE
+ L RX,#@LB1
+ BCR 15,RX
+#@LB1 DC A(#@LB2)
+ DC A(#@LB4)
+ DC A(#@LB4)
+ DC A(#@LB2)
+ DC A(#@LB4)
+ DC A(#@LB5)
+#@LB2 DC 0H

This example shows a CASE macro using a branch vector and case number that are multiples of 8:
CASENTRY Rx,POWER=3,VECTOR=B

CASE 8,24
Code for F1

CASE 16,32
Code for F2

ENDCASE

32 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

The example produces:
Rx equ 3

CASENTRY Rx,POWER=3,VECTOR=B
+ SRA Rx,3-2
+ BC 15,#@LB1(Rx)

CASE 8,24
+#@LB3 DC 0H
* code for F1

CASE 16,32
+ BC 15,#@LB2
+#@LB4 DC 0H
* code for F2

ENDCASE
+#@LB1 BC 15,#@LB2
+ BC 15,#@LB3
+ BC 15,#@LB4
+ BC 15,#@LB3
+ BC 15,#@LB4
+#@LB2 DC 0H

The next example shows the use of register 0 and the BRAS instruction when ASMMREL ON is in effect.
Also, the macros have a branch table generated by default.
rx equ 3

ASMMREL ON
CASENTRY Rx,POWER=3

+ SRA Rx,3-2
+ LR 0,Rx
+ CNOP 0,4
+ BRAS Rx,*+8
+ DC A(#@LB1-*)
+ AL Rx,0(Rx,0)
+ ALR Rx,0
+ BR Rx

CASE 8,24
+#@LB3 DC 0H
* code for F1

CASE 16,32
+ BRC 15,#@LB2
+#@LB4 DC 0H
* code for F2

ENDCASE
+#@LB1 BRC 15,#@LB2
+ BRC 15,#@LB3
+ BRC 15,#@LB4
+ BRC 15,#@LB3
+ BRC 15,#@LB4
+#@LB2 DC 0H

The next example shows the use of LARL when both ASMMREL and SYSSTATE ARCHLVL=2 are in
effect.
rx equ 3

SYSSTATE ARCHLVL=2
+* THE VALUE OF SYSSTATE IS NOW SET TO ASCENV=P AMODE64=NO ARCHLVX
+ L=2

ASMMREL ON
CASENTRY Rx,POWER=3

+ SRA Rx,3-2
+ LARL 0,#@LB1
+ ALR Rx,0
+ BR Rx

CASE 8,24
+#@LB3 DC 0H
* code for F1

CASE 16,32
+ BRC 15,#@LB2

Chapter 2. Using structured programming macros 33

+#@LB4 DC 0H
* code for F2

ENDCASE
+#@LB1 BRC 15,#@LB2
+ BRC 15,#@LB3
+ BRC 15,#@LB4
+ BRC 15,#@LB3
+ BRC 15,#@LB4
+#@LB2 DC 0H

34 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

The SELECT macro set
The SELECT macro set selects one of a set of functions for execution, depending on the result of a
comparison. The flowchart for the SELECT program figure is:

┌──────┐ ┌────────┐ True ┌────┐
──────→┤SELECT├────→┤WHEN (1)├──────→┤ F1 ├──→──────────┐

└──────┘ └───┬────┘ └────┘ │
│ ↓
│ False │
↓ │

┌───┴────┐ True ┌────┐ │
│WHEN (2)├──────→┤ F2 ├──→──────────┤
└───┬────┘ └────┘ │

│ False ↓
↓ │

┌───┴────┐ True ┌────┐ │
│WHEN (3)├──────→┤ F3 ├──→──────────┤
└───┬────┘ └────┘ │

│ False ↓
│ │
. .
. .
↓ .

┌───┴────┐ True ┌────┐
│WHEN (n)├──────→┤ Fn ├──→──────────┤
└───┬────┘ └────┘ │

│ False │
↓ ↓

┌────┴────┐ ┌─────┐ ┌───┴──┐
│ OTHRWISE├──────→┤Code ├───────→┤ENDSEL├─→
└─────────┘ └─────┘ └──────┘

OTHRWISE is optional.

This example uses the SELECT, WHEN, OTHRWISE, and ENDSEL macros:
SELECT CLI,0(R6),EQ Defines the comparison

WHEN (X’20’)
Code for F1

WHEN (1,5,13)
Code for F2

WHEN (3,7,15)
Code for F3

OTHRWISE
Code for F4

ENDSEL

It produces:
SELECT CLI,0(R6),EQ Defines the comparison

WHEN (X’20’)
CLI 0(R6),X’20’
BC 15-8,#@LB2
Code for F1
WHEN (1,5,13)
BC 15,#@LB1 SKIP TO END

#@LB2 DC 0H
CLI 0(R6),1
BC 8,#@LB5
CLI 0(R6),5
BC 8,#@LB5
CLI 0(R6),13
BC 15-8,#@LB4

#@LB5 DC 0H
Code for F2
WHEN (3,7,15)

Chapter 2. Using structured programming macros 35

BC 15,#@LB1 SKIP TO END
#@LB4 DC 0H

CLI 0(R6),3
BC 8,#@LB7
CLI 0(R6),7
BC 8,#@LB7
CLI 0(R6),15
BC 15-8,#@LB6

#@LB7 DC 0H
Code for F3
OTHRWISE
BC 15,#@LB1 SKIP TO END

#@LB6 DC 0H
Code for F4

ENDSEL
#@LB1 DC 0H

Here is another example of the SELECT Macro Set:
SELECT CLM,2,B’1100’,EQ
WHEN (=C’AA’,=C’BB’)

Process A
WHEN =C’AB’

Process B
WHEN =C’12’

Process C
ENDSEL

It produces:
CLM 2,B’1100’,=C’AA’
BC 8,LB3
CLM 2,B’1100’,=C’BB’
BC 15-8,LB2

LB3 DC 0H
Process A

B LB1
LB2 DC 0H

CLM 2,B’1100’,=C’AB’
BC 15-8,LB4

Process B
B LB1

LB4 DC 0H
CLM 2,B’1100’,=C’12’
BC 15-8,LB6

Process C
LB6 DC 0H
LB1 DC 0H

The SELECT group allows a SELECT with no operands followed by WHEN macros with IF style
operands. This produces the same structure as the IF/ELSEIF/ELSE/ENDIF macros.

For example: :
SELECT
WHEN (CLI,WORD1,EQ,1),OR,(CLI,WORD1,EQ,2),OR,(CLI,WORD1,EQ,3)

<code for first condition>
WHEN (CLI,WORD2,EQ,2),AND,(CLI,WORD3,EQ,3)

<code for second condition>
OTHRWISE

<otherwise code>
ENDSEL

produces (assuming that ASMMREL ON has been coded earlier):

36 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

SELECT
WHEN (CLI,WORD1,EQ,1),OR,(CLI,WORD1,EQ,2),OR,(CLI,WORD1,EQ,3)

CLI WORD1,1
BRC 8,#@LB3
CLI WORD1,2
BRC 8,#@LB3
CLI WORD1,3
BRC 15-8,#@LB2

#@LB3 DC 0H
<code for first condition>

WHEN (CLI,WORD2,EQ,2),AND,(CLI,WORD3,EQ,3)
BRC 15,#@LB1 SKIP TO END

#@LB2 DC 0H
CLI WORD2,2
BRC 15-8,#@LB4
CLI WORD3,3
BRC 15-8,#@LB4
<code for second condition>

OTHRWISE
BRC 15,#@LB1 SKIP TO END

#@LB4 DC 0H
<otherwise code>

ENDSEL
#@LB1 DC 0H

Chapter 2. Using structured programming macros 37

38 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Chapter 3. Using the disassembler

The Disassembler produces assembler language source statements and a pseudo-listing using object code
as input. You can use the Assembler Language source file and listing for purposes such as program
understanding, debugging, and recovery of lost source code.

ASMDASM is a two-pass disassembler which produces an assembler language source program from a
CSECT within any of the following:

z/OS An object module, a program object, or a load module.

CMS An object deck, or a CMS Module.

z/VSE An object module, or a phase.

Control statements permit specification of areas containing instructions or data or uninitialized data areas,
provide base registers so that symbolic labels are created during disassembly, and define the DSECTs
used during disassembly.

Registers are denoted thus:
v Access Registers are denoted by A0, A1,...A15.
v Control Registers are denoted by C0, C1,...C15.
v Floating Point Registers are denoted by F0, F1,...F15.
v General Purpose Registers are denoted by R0, R1,...R15.
v Vector Registers are denoted by V0, V1,...V15.

The Disassembler provides informational comments for recognized SVCs, and for various branch
instructions to aid in creating a documented source program.

A warning about copyright: When you use this utility you must be aware of and respect the intellectual
property rights of others. You are not authorized to use this utility to disassemble, copy, or create
assembly listings or disassembled Assembler Language source code in violation of any contractual or
other legal obligation. You are authorized to use this utility only for object code for which you have
verified you have the right to perform disassembly.

The Disassembler normally scans the object code for special strings. If any of these are found, then the
Disassembler issues message ASMD010 and the disassembly stops.

The Disassembler searches for the these special strings:
v (c)
v (C)
v © at code point X'B4'
v "Copyright" in any combination of uppercase and lowercase letters.

Invoking the disassembler
on z/OS, the Disassembler processes a program object, a load module, or an object module.

On CMS, the Disassembler processes either a CMS Module, or an object deck.

On z/VSE, the Disassembler processes either an object module or a phase.

For details on the resulting output for each operating system see “Output description” on page 49.

© Copyright IBM Corp. 1992, 2013 39

Invoking the disassembler on z/OS
on z/OS you invoke the Disassembler as a batch program using Job Control Language (JCL). The
following sections describe the job control language statements you can use.

z/OS JCL Example

The following details explain the lines of JCL in Figure 6 highlighted with a number (such as �1�).

�1� Replace options with any Disassembler options that you want to use. For a list of options, see
“Disassembler options on z/OS” on page 41.

EXEC PGM=ASMDASM runs the Disassembler program named ASMDASM.

�2� To disassemble an object module, replace user.loadlib with either:
v The name of the sequential data set containing the object module
v The name of the PDS, followed by the name of the member in parentheses, containing the

object module
v The name of the PDSE, followed by the name of the member in parentheses, containing the

program object. (DFSMS/MVS™ 1.3 or higher is required to support this).

To disassemble a load module, replace user.loadlib with the name of the PDS containing the load
module. Specify the load module pds_member in the Module-CSECT process statement (for details,
see �5�).

To disassemble a program object, replace user.loadlib with the name of the PDSE containing the
program object. Specify the program object pdse_member in the Module-CSECT process statement
(for details, see �5�).

SYSLIB specifies the object module or, in combination with the pds_member or pdse_member in �5�,
the load module or program object to be disassembled.

�3� If you require the assembly listing in a file, enter the name of the data set.

The optional SYSPRINT DD statement specifies the output file for the assembly listing. You must
specify the BLKSIZE as a multiple of 121. RECFM=FBA,LRECL=121 is hard-coded.

�4� If you require the output disassembled source in a file, enter the name of the data set.

The SYSPUNCH DD statement is an optional statement which specifies an output file for the
disassembled source. You must specify the BLKSIZE as a multiple of 80. RECFM=FB,LRECL=80 is
hard-coded.

�5� Replace the Module-CSECT control statement, consisting of module_name and csect_name, with
appropriate values for the SYSLIB you specified in �2�. If you specified an object module or a
program object in �2�, then pds_member or pdse_member is ignored. For details, see the
“Module-CSECT statement (required)” on page 45.

//DISASM EXEC PGM=ASMDASM,PARM=’options’ �1�
//SYSLIB DD DSN=user.loadlib,DISP=SHR �2�
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=3630 �3�
//SYSPUNCH DD DSN=user.command.asm,DISP=(,CATLG), �4�
// UNIT=SYSDA,DCB=BLKSIZE=3200,
// SPACE=(TRK,(5,2),RLSE)
//SYSIN DD *
module_name csect_name �5�
other control statements

...
//*COPYLIB DD DSN=user.copy.name,DISP=SHR �6�

Figure 6. Sample disassembler z/OS JCL

40 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Add any other control statements below the Module-CSECT statement.

SYSIN DD contains the control statements. You must specify the module-CSECT statement. You
must specify a BLKSIZE in a multiple of 80. RECFM=FB,LRECL=80 is hard-coded.

�6� If you use the COPY control statement enter the COPYLIB DD statement.

The COPYLIB DD statement contains control statement members selected by COPY control
statement. The Disassembler opens this file only if you use the COPY control statement. You must
specify a BLKSIZE in a multiple of 80. RECFM=FB,LRECL=80 is hard-coded.

Disassembler options on z/OS
on z/OS you can specify the following options in the PARM field:

COPYRIGHTOK
Allow disassembly of copyrighted module. If you use the COPYRIGHTOK option then message
ASMD008 is printed at the start of the listing.

HEX Generate the offset in machine instructions as a hexadecimal value.

OPTABLE
Specifies the operation code table to be used in disassembling CSECTs.

��
UNI

OPTABLE (DOS)
OP ESA

XA
370
ZOP
YOP

��

NEWNUM
Allow any numeric field within a control statement to be specified either as a decimal value (a
sequence of decimal digits) or a hexadecimal value (enclosed in apostrophes and preceded by the
letter X).

VSESVC
Use the z/VSE description for SVCs, not the z/OS description. Use this option when
disassembling z/VSE code while running on z/OS.

You can specify any of the above options together in the PARM string in any order, separated by a
comma or space.

Invoking the disassembler on CMS
On CMS you invoke the Disassembler with the ASMD command.

�� ASMD filename
MODULE

�(option

��

The ASMD command allocates all required files and then passes control to the Disassembler module,
ASMDASM. If you enter any file definitions before the ASMD command is issued, then they are used.

Chapter 3. Using the disassembler 41

The MODULE keyword is required if and only if you are disassembling a CMS module.

Here are the file definitions:

SYSIN
This file contains control statements of which the module-CSECT statement is required.

The ASMD command issues the following FILEDEF command:
FILEDEF SYSIN DISK filename DISASM * (RECFM FB LRECL 80 BLOCK 16000

SYSLIB
Specifies the file name of the module to be disassembled.

For object decks, the ASMD command issues the following FILEDEF command:
FILEDEF SYSLIB DISK filename TEXT * (RECFM FB LRECL 80 BLOCK 16000

For CMS Modules, no FILEDEF command is issued.

SYSPRINT
Specifies the output file for the disassembler listing

The ASMD command issues the following FILEDEF command:
FILEDEF SYSPRINT DISK filename LISTING * (RECFM FBA LRECL 121 BLOCK 1210

SYSPUNCH
Specifies the output file for the disassembler source.

The ASMD command issues the following FILEDEF command:
FILEDEF SYSPUNCH DISK filename PUNCH * (RECFM FB LRECL 80 BLOCK 16000

COPYLIB
This contains control statement members selected by COPY control statement. Opened only if you
use the COPY control statement.

The ASMD command issues the following FILEDEF command:
FILEDEF COPYLIB DISK CMSLIB MACLIB * (RECFM FB LRECL 80 BLOCK 8000

Before using the COPY control statement, you must issue the CMS command GLOBAL MACLIB
to identify the MACLIBs to be searched for control statement members. For more information
about the GLOBAL MACLIB command, see the applicable CMS Command and Macro Reference.

CMS example
This example disassembles the CSECT COMMAND in object file PROCESS TEXT.

The following command identifies PROCESS TEXT as the object file:
ASMD PROCESS

For this example, the predefined control statements file PROCESS DISASM contains only a
Module-CSECT statement:
ANYNAME COMMAND

where ANYNAME is ignored, and COMMAND identifies the CSECT to be disassembled.

The Disassembler outputs a listing in the file PROCESS LISTING, and the disassembled source in the file
PROCESS PUNCH.

Disassembler options on CMS
On CMS you can specify the following options:

42 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

COPYRIGHTOK
Allow disassembly of copyrighted module. If you use the COPYRIGHTOK option then the
Disassembler prints message ASMD008 at the start of the listing.

DISK Output the LISTING file to disk, this is the default.

ERASE
Specifies that the existing files with a file name the same as the file name on the ASMD
command, and a file type of LISTING and PUNCH are deleted before the Disassembly is run.
Only files on the disk on which the Disassembler writes the new listing and source files are
deleted. ERASE is the default.

HEX Generate the offset in machine instructions as a hexadecimal value.

OPTABLE
Specifies the operation code table to be used in disassembling CSECTs.

��
UNI

OPTABLE (DOS)
OP ESA

XA
370
ZOP
YOP

��

NEWNUM
Allow any numeric field within a control statement to be specified either as a decimal value (a
sequence of decimal digits) or a hexadecimal value (enclosed in apostrophes and preceded by the
letter X).

NOERASE
Do not erase the existing LISTING and PUNCH files before the disassembly is run.

NOPRINT
Suppress the writing of the LISTING file.

PRINT
Outputs the LISTING file to the virtual printer. The listing is not written to disk.

VSESVC
Use the z/VSE description for SVCs, not the z/OS description. Use this option when
disassembling z/VSE code while running on CMS.

You can specify any of the above options together in the PARM string in any order, separated by a
comma or space.

Invoking the disassembler on z/VSE
On z/VSE you invoke the Disassembler as a batch program using Job Control Language (JCL). The
following section describes the job control language statements that you need to run the Disassembler.

Chapter 3. Using the disassembler 43

z/VSE JCL example:

The following details explain the lines of JCL in Figure 7 highlighted with a number (such as �1�).

�1� Replace user.library and hlasm.library with the search chain for the phase or object.

�2� Replace options with any Disassembler options that you want to use. For a list of options, see
“Disassembler options on z/VSE.” If you do not need any options omit the PARM field.

EXEC ASMDASM runs the Disassembler program named ASMDASM. The Disassembler control
statements can follow the EXEC statement, in SYSIPT as in the example shown above. Enter each
statement on a separate line, with the last statement followed by the SYSRDR termination control
characters /* on the last line. Or you can assign SYSIPT to a file.

Disassembler options on z/VSE
On z/VSE you can specify the following options:

COPYRIGHTOK
Allow disassembly of copyrighted module. If you use the COPYRIGHTOK option the
Disassembler prints the message ASMD008 at the start of the listing.

HEX Generate the offset in machine instructions as a hexadecimal value.

OPTABLE
Specifies the operation code table to be used in disassembling CSECTs.

��
UNI

OPTABLE (DOS)
OP ESA

XA
370
ZOP
YOP

��

MVSSVC
Use the z/OS description for SVCs, not the z/VSE description. Use this option when
disassembling z/OS code while running on z/VSE.

NEWNUM
Allow any numeric field within a control statement to be specified either as a decimal value (a
sequence of decimal digits) or a hexadecimal value (enclosed in apostrophes and preceded by the
letter X).

PHASE
If the module processed is a PHASE that may also exist as an object then you must specify
PHASE.

Note: If you have not specified PARM=’PHASE’ the Disassembler searches for an object first, and if
the object is not found it searches for a phase.

// LIBDEF *,SEARCH=(user.library,hlasm.library) �1�
// EXEC ASMDASM,PARM=’options’ �2�
module_name csect_name
/*

Figure 7. Sample disassembler z/VSE JCL

44 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

You can specify any of the above options together in the PARM string in any order, separated by a
comma or space.

Control statements
You enter control statements:

z/OS In SYSIN and, optionally, in a PDS member specified by a COPY control statement. This member
must belong to the PDS specified by the COPYLIB DD statement.

CMS In the file filename DISASM (where you invoked the Disassembler using the command ASMD
filename) and, optionally, in a MACLIB member specified by a COPY control statement. This
member must belong to a MACLIB specified by the GLOBAL MACLIB CMS command.

z/VSE In SYSIPT and, optionally, in a Librarian member specified by a COPY control statement. This
member must belong to a library specified in the search chain.

The following rules apply to control statements:
v Columns 1–72 can contain only data.
v Columns 73–80 can be used for any desired purpose. In addition, columns beyond the last specified

may be used for any purpose.
v Hexadecimal fields may contain only the hexadecimal digits 0–9 and A–F, while decimal fields may

contain only digits 0–9.
v You must specify the module-CSECT statement in the first statement in the input stream. For more

details on the Module CSECT statement see “Module-CSECT statement (required).”
v DSECT definitions may not include any other control statement.
v USING statements for DSECTs must be entered after the DSECT definition.
v DATA-only statements and program USING statements may be entered in any order except within

DSECT definitions.

The COPY control statement may be used to switch the input stream to a member of the COPYLIB file
which contains additional control statements. COPY statements are not allowed in these supplemental
control statement members. That is, COPY statements may not cause nesting COPYing. After the COPY
member input is exhausted, the original input stream is resumed. This control statement is especially
helpful where a large common DSECT is used by multiple CSECTs in a module.

Module-CSECT statement (required)
Identifies the module and CSECT to be disassembled. Must be the first control statement in the input
stream, and specifies the module name, CSECT name, and optionally CLASS name for program objects.

z/OS z/OS needs the module name. If you specify the name of a PDS or PDSE in the SYSLIB DD
statement, then the module name you specify in the Module-CSECT statement identifies a load
module or a program object to be disassembled, which must be a member of that PDS or PDSE.
Otherwise, the name is ignored (but still needed); the PDS or PDSE member or sequential data
set identified by the SYSLIB DD statement is assumed to be an object module. The CSECT name
is optional. If it is specified, the named CSECT must exist in the module or object module. If
omitted, the CSECT with ESDID=0001 is disassembled.

z/VM On CMS, you must provide a module name but it is not used for object decks. For object decks,
only the first CSECT is disassembled; selection of specific CSECTs is not possible. For CMS
modules, the CSECT name is optional. If it is specified, the named CSECT must exist in the
module.

z/VSE On z/VSE, a phase does not contain any information allowing selection of individual CSECTs.
The phase is therefore viewed as one CSECT where the CSECT name is determined by the
CSECT name on this statement, if present; otherwise it is the module name.

Chapter 3. Using the disassembler 45

Format
Free-form, with module name beginning in column 1. At least one space must separate module name and
CSECT name and, if specified, CLASS name. The names may be separated by any number of spaces.

DATA-only statement (optional)
This describes areas of the CSECT being disassembled which contain no instructions. Use of this
statement eliminates creation of instructions from constant data, or from areas containing values created
during program linking. Up to 256 DATA-only statement may be entered. These statements may occur
anywhere in the input stream after the module-CSECT statement, but not within a DSECT definition set.

Table 6. DATA-only statement: format

Column Contents

1–4 v literal 'DATA'

5 onwards v one or more spaces
v offset to beginning of area, in hexadecimal
v one or more spaces
v offset to end of area (last byte), in hexadecimal

INSTR-only statement (optional)
This describes areas of the CSECT being disassembled which are instruction areas. This statement allows
the bypassing of the following tests which might identify valid instructions as data:
v 4 consecutive identical bytes
v 6 consecutive valid EBCDIC characters
v next instruction valid opcode

The remaining instruction tests remain in effect, and invalid instructions are still generated as
hexadecimal data statements. Up to 256 INSTR-only statements can be entered. These statements can
occur anywhere in the input stream after the module-CSECT statement, but not within a DSECT
definition set.

Table 7. INSTR-only statement: format

Column Contents

1–5 v literal 'INSTR'

6 onwards v one or more spaces
v offset to beginning of area, in hexadecimal
v one or more spaces
v offset to end of area (last byte), in hexadecimal

DS-area statement (optional)
This describes areas of the CSECT being disassembled which are uninitialized storage areas. These text
areas are cleared to binary zeros before the disassembly begins. Use of this statement forces the creation
of DS assembly opcodes, eliminating the creation of instructions or data constants. Up to 256 DS-area
statements may be entered. These statements may occur anywhere in the input stream after the
module-CSECT statement, but not within a DSECT definition set.

Table 8. DS-area statement: format

Column Contents

1–2 v literal 'DS'

46 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Table 8. DS-area statement: format (continued)

Column Contents

3 onwards v one or more spaces
v offset to beginning of area, in hexadecimal
v one or more spaces
v offset to end of area (last byte), in hexadecimal

DSECT definitions (optional)
A DSECT is defined by a header statement followed by up to 9999 field definition statements. No other
control statements may be entered within a DSECT definition. Up to 256 DSECT definitions may be
entered.

Table 9. DSECT header statement: format

Column Contents

1–8 v DSECT name

9 onwards v one or more spaces
v literal 'DSECT'
v one or more spaces
v number of field statements to follow (decimal)

Table 10. DSECT field statement: format

Column Contents

1–8 v field name

9 onwards v one or more spaces
v offset to start of field (decimal). Maximum offset is 4095.
v one or more spaces
v length of field in bytes (decimal). Maximum length is 999.

ULABL statements
These statements define user labels to be placed on statements within the program. If program base
registers are set up with USING statements, these are also generated as symbolic operands on
instructions.

Table 11. ULABL statements: format

Column Contents

1–5 v literal 'ULABL'

6 onwards v one or more spaces
v label name
v one or more spaces
v offset to start of field (hexadecimal)
v one or more spaces
v length of the named field (decimal). Maximum length is 999.

USING statements
These statements define base register usage. Up to 256 USING statements may be entered. These
statements permit the Disassembler to convert explicit base-displacement addresses to symbolic labels.
Labels created within the program is 7 characters long. The first character is 'A', followed by the
6-hex-digit offset to the label. A USING statement must be entered for each DSECT to be used.

Chapter 3. Using the disassembler 47

Table 12. USING statements: format

Column Contents

1–5 v literal 'USING'

6 onwards v one or more spaces
v offset of beginning location for USING range in hexadecimal (this is where the USING

statement occurs)
v one or more spaces
v offset of ending location for USING range in hexadecimal (this is where the DROP statement

occurs)
v one or more spaces
v base register to be used (hexadecimal 1-F)
v one or more spaces
v type, P=program base, D=DSECT base
v one or more spaces
v initial base register value (if type P) in hexadecimal
v DSECT name (if type D)

COPY statement (optional)
This switches the control statement input stream to the specified source member in a data set or library,
appropriate to the platform. This member contains additional control statements which are read and
processed until the COPY control statements member is exhausted. These statements may occur
anywhere in the input stream after the module-CSECT statement, but not within a control statement
member being copied.

Table 13. COPY statement: format

Column Contents

1–4 v literal 'COPY'

5 onwards v one or more spaces
v COPY member name

Comment statement (optional)
The comment statement allows you to enter comments in the control statement stream which is printed
as part of the entered statement, but ignored thereafter.

Table 14. Comment statement: format

Column Contents

1 v literal '*'

2–72 v comment text

Disassembling a module for the first time
When you first disassemble a module, do not use the SYSPUNCH (SYSPCH for z/VSE) output, but print
the SYSPRINT (SYSLST for z/VSE) listing. Use the listing to determine which registers are used as
program base registers, their initial values, and their ranges. Make up USING statements for these. Find
any places where no instructions should be generated (only constants), and make up data-only statements
for these ranges. Find any uninitialized data areas (DS areas), and make up DS statements for these
ranges. If you can determine any registers that are bases for areas which can be used for DSECTs,
determine the range of valid use, and make up DSECT definitions and USING statements for these.
Perform a second disassembly, including the above statements, and creating a source program with the
SYSPUNCH (SYSPCH for z/VSE) output.

48 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Output description
Output for the dissembler is either as SYSPUNCH content, or SYSPRINT content.

SYSPUNCH (SYSPCH for z/VSE) content
This output contains the disassembled source program. Statement names begin in column 1, mnemonics
begin in column 10, operands in col 16, and an occasional comment begins in column 44. A sequence
number (by tens) is in columns 73–80. Comments are included to show the macro name associated with
SVCs, and other statements are flagged to aid in identification of certain operations:

Instruction / Addresses
Comment

BALR 14,15
std linkage

BALR x,0
address set

other BALRs
non-std linkage

BASR 14,15
std linkage

BASR x,0
address set

other BASRs
non-std linkage

BAL 0,xxx and BAL 1,xxx
parm set brch

BAL x,xxx
perform

BAS 0,xxx and BAS 1,xxx
parm set brch

BAS x,xxx
perform

STM instructions
save regs

LM instructions
restore regs

BCR 15,R14
exit

absolute location hexadecimal 10
CVT address

absolute location hexadecimal 4C
CVT address

other absolute locations
PSA reference

EX instructions
run instr opcode

Chapter 3. Using the disassembler 49

L instructions
reference to ADCONS

When used explicitly in instructions, registers are denoted by:
v Access Registers by A0, A1,...A15.
v Control Registers by C0, C1,...C15.
v Floating Point Registers by F0, F1,...F15.
v General Purpose Registers by R0, R1,...R15.
v Vector Registers by V0, V1,...V15.

An ASMDREG macro is generated at the end of the program to create the appropriate EQU statements
for the symbols defining the Access, Control, Floating Point, General Purpose, and Vector registers. If any
DSECTs were defined in the SYSIN file, they are near the end of the source program. ASMDREG is
installed by default in PRD2.PROD. Check with your systems programmer if HLASM Toolkit was
installed in a different sublibrary.

SYSPRINT (SYSLST for z/VSE) content
Directory information

Contains data from the directory entry of the module containing the CSECT to be disassembled,
if available.

ESD table
A formatted list of all external symbol entries found in the module.

RLD table
A formatted listing of all relocation dictionary entries pertaining to this CSECT.

User entered records
A list of the records entered by you, with diagnostics, if appropriate.

Label table
A list of all the labels to be used during disassembly including those developed from ESD entries,
RLD entries, and generated names resulting from USING statements processing.

Text A storage-dump formatted listing of the text which comprises the CSECT being disassembled.

Source listing
A printout of the generated source program statements, including the hexadecimal value which
resulted in the instruction's creation.

Note: The number of lines per page assumed in the disassembler listing is 60.

Disassembler CMS messages

ASMDCMS002E File fn ft fm not found

Explanation: The file name you included in the ASMD
command does not correspond to the names of any of
the files on your disks.

Supplemental Information: The variable file name, file
type, and file mode in the text of the message indicate
the file that could not be found.

System action: RC=28. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer response: Reissue the ASMD with the
correct file name.

ASMDCMS003E Invalid option option

Explanation: You have included an incorrect option
that is not correct with your ASMD command.

Supplemental Information: The variable option in the
text of the message indicates the option that is not
correct.

System action: RC=24. Processing of the command
terminates. The system remains in the same status as

ASMDCMS002E • ASMDCMS003E

50 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

before the command was entered.

Programmer response: Check the format of the ASMD
command, and reissue the command with the correct
option.

ASMDCMS004E Improperly formed option option

Explanation: You have included an improperly
formed option with your ASMD command.

Supplemental Information: The variable option in the
text of the message indicates the improperly formed
option.

System action: RC=24. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer response: Check the format of the ASMD
command, and reissue the command with the correct
option.

ASMDCMS005E Truncation of options may have
occurred because of tokenized PLIST
format

Explanation: The options have been passed to the
ASMD command in tokenized PLIST format. Any
options passed might have been truncated to eight
characters. This message is only issued when an error
has been detected in one of the options that was
specified.

System action: The options are accepted as entered
but might have been truncated.

Programmer response: If the options have been
truncated, invoke the ASMD command with the
extended parameter list.

ASMDCMS006E No read/write disk accessed

Explanation: Your virtual machine configuration does
not include a read/write disk for this terminal session,
or you failed to specify a read/write disk.

System action: RC=36. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer response: Issue an ACCESS command
specifying a read/write disk.

ASMDCMS007E File 'fn ft fm' does not contain fixed
length 80 character records

Explanation: The control file you specified in the
ASMD command does not contain fixed-length records
of 80 characters.

Supplemental Information: The variable file name, file
type, and file mode in the text of the message indicate
the file that is in error.

System action: RC=32. The command cannot be
processed.

Programmer response: You must reformat your file
into the correct record length. CMS XEDIT or
COPYFILE can be used to reformat the file.

ASMDCMS010E File name omitted and FILEDEF
'ddname' is undefined

Explanation: You have not included a file name in the
ASMD command, and no FILEDEF could be found for
the ddname specified.

System action: RC=24. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer response: Reissue the ASMD command
and specify a file name, or issue a FILEDEF for the
ddname specified.

ASMDCMS011E File name omitted and FILEDEF
'ddname' is not for DISK.

Explanation: You have not included a file name in the
ASMD command, and the FILEDEF for the ddname
specified is not for DISK.

System action: RC=24. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer response: Reissue the ASMD command
and specify a file name, or reissue the FILEDEF for the
ddname specified with a device type of 'DISK'.

ASMDCMS038E File name conflict for the SYSIN
FILEDEF.

Explanation: The file name specified on the ASMD
command conflicts with the file name on the FILEDEF
for the SYSIN ddname.

System action: RC=40. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer response: Reissue the FILEDEF
command or the ASMD command specifying the same
file name.

ASMDCMS052E Option list exceeds 512 characters.

Explanation: The string of options that you specified
with your ASMD command exceeded 512 characters in
length.

System action: RC=24. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer response: Reissue your ASMD command
with fewer options specified.

ASMDCMS004E • ASMDCMS052E

Chapter 3. Using the disassembler 51

ASMDCMS062E Invalid character c in file name
file_name

Explanation: A character that is not permitted was
specified in the file name specified on the ASMD
command.

System action: RC=40. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer response: Check the format of the option
with its correct parameters, and reissue the command
with the correct parameter.

ASMDCMS070E Left parenthesis '(' required before
option list

Explanation: An option was specified after the file
name but before the left parenthesis on the ASMD
command.

System action: RC=40. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer response: Issue the ASMD command
again with the option specified after the left
parenthesis. Only the file name can be specified before
the left parenthesis.

ASMDCMS074E Required module module_name
MODULE not found

Explanation: The ASMD command was unable to load
the specified module.

System action: RC=40. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer response: Verify you have accessed the
disk containing the disassembler and issue the ASMD
command again.

ASMDCMS075E Device device invalid for file_name

Explanation: The device specified in your FILEDEF
command cannot be used for the input or output
operation that is requested in your program. For
example, you have tried to read data from the printer
or write data to the reader.

Supplemental Information: The variable device name
in the text of the message indicates the incorrect device
that was specified.

System action: RC=40. Processing of the command
terminates. The system remains in the same status as
before the command was entered.

Programmer response: Reissue your FILEDEF
command, specifying the correct device for the required
input operation.

Disassembler messages

ASMD000 Invalid Parameter, specified: parameter

Explanation: The parameter specified is not correct.

Programmer response: Ensure that the parameter
specified is one of the following values:

COPYRIGHTOK
HEX
OPTABLE
NEWNUM
PHASE (z/VSE Only)
VSESVC

ASMD001 Member and CSECT must be entered
via SYSIN

Explanation: The member and CSECT names could
not be determined

Programmer response: Ensure that the module-CSECT
statement is present in the control file as the first
statement.

ASMD002 Member or CSECT name over 8
characters

Explanation: Either the member name or CSECT name

on the module-CSECT statement exceeds eight
characters.

Programmer response: Correct the member name or
the CSECT name on the module-CSECT statement to be
eight characters or fewer.

ASMD003 No member name found on control
record

Explanation: The member name is missing from the
module-CSECT record.

Programmer response: Add the desired member name
to the module-CSECT record.

ASMD004 Specified member not found

Explanation: The specified member was not found.

Programmer response: Ensure that the correct
member has been specified and:
z/OS The correct SYSLIB data set is being used.
z/VM The correct MACLIB has been referenced with

GLOBAL MACLIB.
z/VSE The correct library has been specified in a

LIBDEF search chain.

ASMDCMS062E • ASMD004

52 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

ASMD005 Specified CSECT not found in member

Explanation: The specified CSECT name was not
found in the ESD records for the module.

Programmer response: Ensure that the correct CSECT
has been specified on the module-CSECT statement.

ASMD006 Label table full

Explanation: The disassembler's label table is full.

Programmer response: Reduce the number of user
labels requested in the control file statements.

ASMD007 CLASS name over 16 characters

Explanation: CLASS name in a program object
exceeds the maximum length.

System action: The disassembly is unable to proceed.

Programmer response: Reduce the length of the
CLASS name to 16 characters or less.

ASMD008 The user of the COPYRIGHTOK option
ensures that this use is not violate any
copyright restrictions or other rights
pertaining to the code being
disassembled.

System action: None. Processing continues

Programmer response: None.

ASMD009 This program may be used to
disassemble only object code that you
own, or program code for which you
have a license to copy and disassemble.

System action: None. Processing continues.

Programmer response: None.

ASMD010 A copyright symbol has been found.
You should verify that you are allowed
to disassemble this object code.

Explanation: The disassembler has detected a
copyright symbol within the object code being
disassembled.

System action: The disassembly is stopped

Programmer response: Ensure that the correct CSECT
is being disassembled. Further information about the
copyright scans may be found at Chapter 3, “Using the
disassembler,” on page 39.

ASMD100 Unidentified record

Explanation: The disassembler is unable to determine
the record type.

System action: The record is ignored and the
disassembly stops after all the control statements are
read in.

Programmer response: Provide a valid record type.

ASMD101 Invalid Begin value

Explanation: The data in the Begin field is invalid hex
data.

System action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer response: Provide valid hex data in the
Begin field.

ASMD102 Invalid End value

Explanation: The data in the End field is invalid hex
data, or the value is odd or the value is greater than
the length of the CSECT being disassembled.

System action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer response: Provide valid hex data in the
End field.

ASMD103 Invalid Register value

Explanation: The data in the register field is invalid
hex data, or the value is zero.

System action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer response: Provide a value between 1 and
F in the register field.

ASMD104 Invalid Initial Base value

Explanation: The data in the initial base value is
invalid hex data

System action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer response: Provide valid hex data in the
initial base value.

ASMD005 • ASMD104

Chapter 3. Using the disassembler 53

ASMD105 Undefined DSECT

Explanation: The DSECT name specified in columns
25 to 30 is undefined.

System action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer response: Change the DSECT name to a
defined name or provide the missing definition.

ASMD106 Over 256 USING records

Explanation: More then 256 USING records have been
specified.

System action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer response: Reduce the number of USING
records specified in the control file.

ASMD107 End before Begin

Explanation: The End address specified is less than
the Begin address.

System action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer response: Change either address so that
the End address is greater then the Begin address.

ASMD108 Invalid USING type

Explanation: The USING type specified is not P or D.

System action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer response: Change the USING type to a
valid value.

ASMD109 Invalid User Label name

Explanation: The User Label Name specified has a
space as the first character.

System action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer response: Change the Label Name so
that it starts with a non-space character.

ASMD110 Invalid Offset

Explanation: The data in the Offset field is invalid hex
data,

System action: The record is ignored and the

disassembly stops after all the control statements are
read in and processed.

Programmer response: Provide valid hex data in the
Offset field.

ASMD111 Invalid Length

Explanation: The data in the Offset field is invalid hex
data or the value exceeds 4096.

System action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer response: Provide valid hex data in the
Offset field or a valid length value.

ASMD112 Label table overflow

Explanation: The disassembler's label table is full.

Programmer response: Reduce the number of user
labels requested in the control file records.

ASMD113 Invalid DSECT name

Explanation: The DSECT name or field name specified
has a space as the first character.

System action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer response: Change the name so that it
starts with a non-space character.

ASMD114 Invalid Number of Fields

Explanation: The number of fields specified is not a
valid decimal number.

System action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer response: Change the number of fields
so that it is a valid decimal number

ASMD115 Invalid Offset

Explanation: The data in the Offset field is invalid
decimal data or the value exceeds 4096.

System action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer response: Provide valid decimal data in
the Offset field or a value less than or equal to 4096.

ASMD105 • ASMD115

54 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

ASMD116 Invalid Length

Explanation: The data in the Offset field is invalid
decimal data, or the value exceeds 4096, or the value is
zero

System action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer response: Provide valid decimal data in
the Offset field or a value between 1 and 4096.

ASMD117 Invalid Begin value

Explanation: The data in the first field (Begin) is
invalid hex data.

System action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer response: Provide valid hex data in the
Begin field.

ASMD118 Invalid End value

Explanation: The data in the second field (End) is
invalid hex data.

System action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer response: Provide valid hex data in the
End field.

ASMD119 End Offset before Begin

Explanation: The End offset specified is less than the
Begin offset.

System action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer response: Change either offset so that the
End offset is greater then the Begin offset.

ASMD120 COPY already in progress

Explanation: A COPY member is already being
processed.

System action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer response: Change the use of COPY
records so that only one member is being used at a
time

ASMD121 Invalid Member name

Explanation: The member name specified in columns
6 to 13 has a space as the first character.

System action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer response: Change the name so that it
starts with a non-space character.

ASMD122 COPYLIB OPEN failed

Explanation: The OPEN of the COPYLIB data set
failed

System action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer response: Ensure that the COPYLIB data
set has the correct organization and record format.

ASMD123 Member not found on COPYLIB

Explanation: The member was not found in the
COPYLIB data set.

System action: The record is ignored and the
disassembly stops after all the control statements are
read in and processed.

Programmer response: Ensure that you specified the
correct member and that it does exist as a member
within the COPYLIB data set.

ASMD124 Binder API Error RC: xxxxxx Reason:
xxxxxx.

Explanation: An internal error has occurred in the
interface between the disassembler and the program
object access module.

System action: The disassembler stops.

Programmer response: Check the return code in
DFSMS/MVS Managing Catalogs SC26-4914 (or later).

ASMD125 Error occurred reading CMS Module.

Explanation: An error occurred when attempting to
disassemble a CMS Module.

System action: The disassembler stops.

Programmer response: Ensure you have specified the
correct CMS Module name when invoking the
disassembler.

ASMD116 • ASMD125

Chapter 3. Using the disassembler 55

ASMD126 Module ASMADOP could not be loaded

Explanation: The disassembler could not load
common operation code table support module.

System action: The disassembler stops.

Programmer response: Contact your systems
programmer.

ASMD126

56 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Chapter 4. Using the Program Understanding Tool

Introducing ASMPUT
The High Level Assembler Program Understanding Tool (ASMPUT) analyzes assembler language
programs, and displays analyzed source code and the corresponding control flow graph.

You can use the control flow graph to trace complex control flows and inter-program linkages.

The control flow graph is made up of nodes and arcs. A node corresponds to a group of lines of code,
typically ending with a branch. An arc shows a connection between nodes - a jump, call, or return from
one line of code to another. (A node that is directly connected to another by an arc is a “linked node”.)
For more information, see “More about nodes” on page 58.

You can display different layers of the control flow graph. Higher layers display items in less detail,
lower layers reveal items in greater detail. For example, when you expand a node by one layer, ASMPUT
breaks the node holding many lines of code into a number of nodes holding fewer lines of code plus
connecting arcs.

Apart from isolated nodes, you can trace a path from one node to another, moving along connecting arcs.
The nodes immediately joined by arcs to a selected node are the nodes of most importance. Nodes
further away are less important to the selected node. When you “remove the context” you remove the
more distant nodes. ASMPUT shows only the nodes directly related to the selected node. You can also
add context, so that nodes related to those currently displayed will also be displayed.

By adding or removing context, and by expanding or collapsing nodes, you can build a control flow
graph that has the degree of simplicity and detail that you want.

Zooming in and out changes the size of the elements in the control flow graph, without making any
difference to the structure of the graph. “Working with the control flow graph” on page 70 explains how
you can control the display of the control flow graph, such as by zooming and by expanding layers.

Clicking on a line of source code highlights the corresponding node in the graph. Likewise, clicking a
node in the graph highlights the corresponding lines of source code. This means that you can trace the
control flow either from the source code listing or from the control flow graph, using whichever you find
the easiest.

To prepare for using ASMPUT, you must create ADATA files for each program you want to analyze.
“Getting started” on page 58 shows how to do this, and outlines the steps for using ASMPUT.

ASMPUT provides information from the High Level Assembler (HLASM) assembly of the programs, for
example, listing all the assembly options. “Working with ADATA files” on page 61 lists the procedures
for opening and closing ADATA files, and viewing source code and assembly-time information.

ASMPUT has three different windows. The Main window shows the ADATA files that are open,
information about these files, and a source code listing. The Control Flow Graph window shows the
control flow graph, and the options and icons you can use the change the structure of the graph. The
Overview window shows a small copy of the control flow graph, and an area box for quick zoom and
scroll control. “ASMPUT windows and window areas” on page 87 describes these windows.

© Copyright IBM Corp. 1992, 2013 57

More about nodes
At the lowest level, a node is a sequential group of statements that starts with an entry point, and ends
with one or more exit points. None of the statements between the entry point and exit point are in their
own right entry or exit points.

The flow of execution through a node means that control enters the node at only one point and leaves
the node at one point, via one or more exit paths.

Figure 8 shows a small example. The graphic beside the lines of code is not part of the code, but to help
in visualizing the example.

In this example, lines 1 and 2 are a node, with a single entry at line 1 and a single exit via a branch
statement at line 2.

Lines 3 and 4 are a node, with entry at line 3 (from line 9) and an exit at line 4 via a fall-through to the
next node. The explanatory graphic shows this fall-through explicitly. The node ends at line 4, because
line 5 is a branch target, from the branch at line 2. This means that the next node starts at line 5.

Lines 5, 6, and 7 are a node, starting at line 5 and with two exit points at line 7. The two exit points are
via a conditional branch and via a fall-through.

Lines 8 and 9 are a node, starting at line 8 and exiting at line 9. The start at line 8 is caused by the fact
that the previous node ended at line 7 and the fall-through causes the entry to the new node at line 8.

At the lowest level, a node is always displayed on the control flow graph as a two-dimensional node.

Two-dimensional nodes are aggregated, through layering, to form a single three-dimensional node. For
example, a subroutine which is called and returns to the caller may consist of many nodes. The layering
process can hide this level of detail, and display the routine as a single three-dimensional node.

See also “Introducing ASMPUT” on page 57

Getting started
The steps for using ASMPUT are:
1. Create an ADATA file

stmt# type of statement
┌───┐

1. Executable statement ┌───→─┤ 1 │
2. Branch to Line 5 │ ┌─←─┤ 2 │

│ │ └───┘
│ │ ┌───┐

3. Executable statement │ │ │ 3 ├─←─┐
4. Executable statement │ │ │ 4 │ │

│ │ └─┬─┘ │
│ │ ↓ │
│ │ ┌─┴─┐ │

5. Executable statement │ └─→─┤ 5 │ │
6. Executable statement │ │ 6 │ │
7. Conditional branch to Line 1 └──←──┤ 7 │ │

└─┬─┘ │
↓ │

┌─┴─┐ │
8. Executable statement │ 8 │ │
9. Branch to Line 3 │ 9 ├─→─┘

└───┘

Figure 8. An example of code and nodes

58 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

You must create an ADATA file on the host before you use ASMPUT, by supplying the ADATA option
at assembly time.
Do not use the XOBJECT or GOFF options, as ASMPUT cannot analyze the resultant output file.
For more information about these options, see Chapter 3 “Controlling Your Assembly With Options”,
of the HLASM Programmer's Guide.

2. Download the ADATA file to your PC

Download the file to your PC as a binary file, and give it the extension “XAA”.
3. Start ASMPUT

Start ASMPUT by the appropriate means (such as by double-clicking the ASMPUT icon or (in
Windows) by selecting from the Start menu). ASMPUT starts with the global values in force when it
was last closed, so the position and size of the Main window are the same as when ASMPUT was last
closed, as are the sizes of the areas within this window, and the showing or hiding of the information
notebook, the zoom slider, and return arcs.

4. Open the ADATA file in ASMPUT

The Open option of the File menu opens a dialog box for you to enter file details. After you complete
opening the ADATA file, ASMPUT analyzes it. For more information, see “Opening an ADATA file”
on page 61.
Figure 9 shows the Main window. This figure, and the following figures in this chapter, show
ASMPUT windows while two sample files (CALCPRG.XAA and ADDPRG.XAA) are open. See “Other
resources” on page 60 for more information about the sample files. The figures in the PDF and HTML
versions of this manual show the ASMPUT windows in color.

5. Open the Control Flow Graph window

Figure 9. The ASMPUT main window

Chapter 4. Using the Program Understanding Tool 59

ASMPUT displays the control flow graph for all currently opened modules. When you open a new
ADATA file, ASMPUT integrates the modules found in that source code into the control flow graph.
The Show Graph option of the View menu opens the Control Flow Graph window. For more
information, see “Opening and closing the control flow graph window” on page 62.
Figure 10 shows the Control Flow Graph window.

6. Peruse the control flow graph

ASMPUT offers many ways to change the appearance of the control flow graph. For example, you can
expand the number of layers, or you can remove the context.
If you click on a node in the graph, the lines of source code corresponding to the node are highlighted
in the source code listing.
For more information, see “Working with the control flow graph” on page 70.

The prime purpose of ASMPUT is to show you a program's control flow in a graphical representation.
However, ASMPUT also lets you view source code, and view information created by HLASM when the
program was assembled.

There are more resources to help you with ASMPUT. For information about these resources, see “Other
resources.”

See also “Introducing ASMPUT” on page 57

Other resources
There are a number of resources to help you use ASMPUT:
v The slide show demo

Figure 10. The ASMPUT control flow graph window

60 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

The slide show demo is a simple demonstration program that runs under Windows (98, XP, Vista). It
shows screen captures of an ASMPUT session, with annotation. The slide show takes roughly five to
ten minutes to run. For a copy of the demonstration and more information, look in the Demo
subdirectory.

v The sample ADATA files

The sample ADATA files are in the Samples subdirectory. CALCPRG.XAA is the main program, and
most of the other sample programs are secondary programs. For example, open CALCPRG.XAA and
look at the control flow graph. There is a gray node for the unresolved external ADDPRG. If you open
the file ADDPRG.XAA, the control flow graph is redrawn, and the gray unresolved external node is
replaced by the cyan “addprg” program entry node.

v Online help

ASMPUT's online help has a similar structure to this chapter. It provides more detailed step-by-step
procedures, and more details for the individual fields of the tabs in the information notebook. The
Help structure also has a word search for a word or words in any topic.
The online help does not include screen captures, and does not provide a detailed listing of ASMPUT
messages.
For more information about online help, see “Using online help” on page 101.

v The HLASM Web site

The HLASM Web site is at http://www.ibm.com/software/awdtools/hlasm/ As well as the latest
HLASM news and downloadable demos, the Web site provides the HLASM manuals in HTML and
PDF format, ready for online browsing, or downloading to your PC for offline browsing.

See also “Getting started” on page 58

Working with ADATA files
ADATA files are produced by HLASM as part of an assembly, when the appropriate options are specified.

The files contain a lot of information about the program. ASMPUT is able to analyze this information,
and present it graphically.

You work with existing ADATA files at the “Main window” on page 87.

Before ASMPUT can do anything with an ADATA file, you must open it. If you want to remove the
contents of the file from the control flow graph, you close it. While the ADATA file is open, you can view
assembly-time information about the file; see “Viewing ADATA file information” on page 67, “Viewing
source code” on page 62, and “Opening and closing the control flow graph window” on page 62.

See also “Introducing ASMPUT” on page 57

Opening an ADATA file
1. On the Main window File menu, click Open.
2. Enter the file name in the File name box.
3. Click Open. ASMPUT analyzes the file, then displays the name of the file in the file list area. If the

Control Flow Graph window is open, the control flow graph is redrawn (at the highest level of
layering), to incorporate any new modules.

You can also start this process by clicking the Open file icon on the toolbar.

After you have opened a file, you can view assembly-time information, view source code, and view the
control flow graph of the code.

See also “Working with ADATA files”

Chapter 4. Using the Program Understanding Tool 61

Opening and closing the control flow graph window
The Control Flow Graph window shows the control flow graph, and controls to manipulate the graph.

To open the Control Flow Graph window
1. Open at least one ADATA file; see “Opening an ADATA file” on page 61
2. Click the Show Graph icon on the toolbar, or on the Main window View menu, click Show Graph.

The Control Flow Graph window is opened.

The control options for the Control Flow Graph window are described in “Working with the control flow
graph” on page 70.

To close the Control Flow Graph window

These methods work from the Control Flow Graph window.
v On the File menu click Exit, or
v Click the Close box, or
v Press the F3 shortcut key. The Control Flow Graph window window is closed.

See also “Working with ADATA files” on page 61

Viewing source code
1. Open the ADATA file that contains the source code; see “Opening an ADATA file” on page 61.

ASMPUT displays the source code for the first source file in the ADATA file.
2. To view the source code of another source file, click another Source Code tag. (Multiple source files

are created when there are many assembler source files in the input file to the assembler, and the
BATCH option has been specified.)

The source code listing is displayed in the “Main window source code area” on page 87.

After the source code is displayed, you can
v Change the font; see “Changing font properties.”
v Show and hide expanded lines from macros and COPY segments; see “Showing and hiding expanded

lines” on page 63.
v Show and hide assembly diagnostics; see“Showing and hiding assembly diagnostics” on page 65.
v Show and hide analysis messages; see “Showing and hiding analysis messages” on page 66.
v Find the next assembly diagnostic or analysis message; see .
v Look for an item of text in the code; see “Finding text in source code” on page 66.

If the ADATA file containing the source code you want to view is already open, click the Source Code tag
of the source code you want to view.

See also “Opening an ADATA file” on page 61 “Working with ADATA files” on page 61

Changing font properties
1. On the Main window Window menu, click Fonts.
2. Select the font, the font style, the font size and any special effects that you want.
3. When all details are acceptable, click OK. The font changes in the source code area.

The font properties apply only to the display of the source code. Changing the font does not change the
font for the file list area, the information notebook, or the nodes of the control flow graph.

The fonts you can change to are the monospaced fonts. They maintain the appearance of the source code
listings.

62 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

You cannot change the color of the font, since source code items are color coded (for a description of the
color code, see “Main window source code area” on page 87).

“Restoring defaults” describes how to change back to the original font.

If you make the font smaller, you can see more source lines in the window. If you make the Main
window larger, the source code area adjusts, to show more source lines.

See also “Viewing source code” on page 62

Restoring defaults
1. On the Main window Window menu, click Restore Defaults.

When you restore defaults, you return the windows to their original size, and return the font in the
source code area to its original font.

To change window sizes from their default sizes, drag the window frames.

You can also restore defaults for the Control Flow Graph window. Click the Restore Defaults option on
the Control Flow Graph window Window menu. This returns the window to its original size.

“Changing font properties” on page 62 describes how to change the font.

See also “Viewing source code” on page 62

Showing and hiding expanded lines
Expanded lines come from COPY segments or macro calls. ASMPUT can either show the expanded lines,
or hide them, at your discretion. You can show or hide expanded lines for each particular COPY segment
and macro call, or everywhere within the program listing.

Figure 11 on page 64 shows a listing without any expanded lines shown. (In this figure, the information
notebook is hidden, to provide more room for the listing.)

Chapter 4. Using the Program Understanding Tool 63

To show expanded lines
1. Display the relevant source code; see “Viewing source code” on page 62
2. Scroll the source code until you find the macro call or COPY segment you want to expand. These are

displayed in magenta (pink).
3. Double-click the line with the macro call or COPY instruction in it.

The expanded lines are displayed immediately below the related macro call or COPY instruction, on a
gray background.

Figure 12 on page 65 shows the listing after the fourth line of the listing (the line containing the
GREETING macro call) has been double-clicked.

Figure 11. A source code listing not displaying any expanded lines

64 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

If the expanded lines contain a macro, then the inner macro is also expanded.

If expanded lines are highlighted (in the current node), then they are displayed.

To show all expanded lines in the source code area, right-click in the source code area, and from the
pop-up menu, click Show Expanded Lines so that it is checked.

To hide expanded lines
1. Double-click in the displayed expanded lines, or on the macro call or COPY instruction immediately

above the displayed expanded lines.

To hide all expanded lines in the source code area, right-click in the source code area, and from the
pop-up menu, click Show Expanded Lines so that it is unchecked.

See also “Viewing source code” on page 62

Showing and hiding assembly diagnostics
Assembly diagnostics are messages created by HLASM when the program is assembled.

To show assembly diagnostics
1. Display the relevant source code.
2. Right-click in the source code area.
3. From the pop-up menu, click Show Assembly Diagnostics, so that it is checked.

Assembly diagnostics are shown in red on a light gray background, and the message has the prefix
“ASMA”.

Figure 12. A source code listing displaying a set of expanded lines

Chapter 4. Using the Program Understanding Tool 65

The Find Next Diagnostic/Message option; see “Finding the next assembly diagnostic or analysis
message” takes you to the next assembly error or analysis message.

To hide assembly diagnostics
1. Display the relevant source code.
2. Right-click in the source code area.
3. From the pop-up menu, click Show Assembly Diagnostics, so that it is unchecked.

See also “Viewing source code” on page 62

Showing and hiding analysis messages
An analysis message is an indication that ASMPUT has found an instruction that could possibly be in
error. It may be worth your while to check the instruction, to make sure that it is correct. The analysis
messages are a little like those from a grammar checker in a word processor.

To show analysis messages
1. Display the relevant source code.
2. Right-click in the source code area.
3. From the pop-up menu, click Show Analysis Messages, so that it is checked.

Analysis messages are shown as red on a light gray background, and the message has the prefix
“ASMP”.

The Find Next Diagnostic/Message option; see “Finding the next assembly diagnostic or analysis
message” takes you to the next assembly diagnostic or analysis message.

To hide analysis messages
1. Display the relevant source code.
2. Right-click in the source code area.
3. From the pop-up menu, click Show Analysis Messages, so that it is unchecked.

See also “Viewing source code” on page 62

Finding the next assembly diagnostic or analysis message
Assembly diagnostics are messages created by HLASM when the program is assembled. An analysis
message is an indication that ASMPUT has found an instruction that could possibly be in error. It may be
worth your while to check the instruction, to make sure that it is correct. The analysis messages are a
little like those from a grammar checker in a word processor.
1. Display the relevant source code.
2. Right-click in the source code area. From the pop-up menu, click Find Next Diagnostic/Message.

Alternatively, press the Ctrl+E keys.

Messages are shown as red on a light gray background. Assembly diagnostics have the prefix “ASMA”,
and analysis messages have the prefix “ASMP”.

If assembly diagnostics and analysis messages are currently hidden, when you find the next diagnostic or
message, it is shown, and stays shown until you hide it.

See also “Showing and hiding assembly diagnostics” on page 65 and “Showing and hiding analysis
messages.”

Finding text in source code
To find text
1. See “Viewing source code” on page 62
2. Right-click in the source code area. From the pop-up menu, click Find. Alternatively, press the Ctrl+F

keys.

66 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

3. Enter the text you want to find in the Find dialog box.
4. If you want an exact match by case, click the Match case check box.
5. Click Find Next. The source code scrolls if necessary, and the matching text is highlighted. If there are

no more occurrences of the text to find, ASMPUT displays the message “ASMP032I End of search.”

To find the next occurrence of text
1. Press the Ctrl+N keys. Alternatively, right-click in the source code area, and from the pop-up menu,

click Find Next. The source code scrolls if necessary, and the matching text is highlighted. If there are
no more occurrences of the text to find, ASMPUT displays the message “ASMP032I End of search.”

You can find text only if it is displayed in the source code area. If necessary, show:
v Expanded lines; see “Showing and hiding expanded lines” on page 63
v Assembly diagnostics; see “Showing and hiding assembly diagnostics” on page 65
v Analysis messages; see “Showing and hiding analysis messages” on page 66

before you try and find text.

Finding always starts looking for the text from the current position of the cursor. You can position the
cursor by clicking in the source code. You can move the cursor to the start of the source code by pressing
the Ctrl+Home keys.

Viewing ADATA file information
The ADATA file information contains information relating to the host assembly of the file.
1. Open the ADATA file; see “Opening an ADATA file” on page 61.
2. Click the name of the file in the File list area.
3. If necessary, display the information notebook, by clicking the Show Info Notebook option of the

Window menu so that it is checked.
4. Click a tab in the information notebook.

The tabs you can click are:
Job ID

Job Information, including details of the Assembler that produced the ADATA file, and when the
file was produced.

HLASM files
Assembler input and output file information. The number of various output files produced, and
the list of all the output file names.

Options
The Assembler options used at assembly time.

Statistics
Statistical information, including the number of records read and written.

Libraries
The number and name of all the libraries read as part of the assembly.

Figure 13 on page 68 shows the Main window with the information notebook displayed, showing the
Statistics tab.

Chapter 4. Using the Program Understanding Tool 67

As well as showing names and numbers, each tab has a More button. Click this button to see more
information, displayed in a new window.

Figure 14 on page 69 shows the Statistics Information More window.

Figure 13. The information notebook Statistics tab

68 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

See also “Viewing source code” on page 62

Viewing Job Id information
1. Open the ADATA file; see “Opening an ADATA file” on page 61.
2. Click the name of the file in the File list area.
3. Click the Job Id tab.

For more Job Id information, click the More button.

See also “Job Id tab” on page 88 and “Viewing ADATA file information” on page 67

Viewing HLASM files information
1. Open the ADATA file; see “Opening an ADATA file” on page 61..
2. Click the name of the file in the File list area.
3. Click the HLASM Files tab.

For more HLASM Files information, click the More button.

See also “HLASM files tab” on page 89 and “Viewing ADATA file information” on page 67

Viewing options information
1. Open the ADATA file; see “Opening an ADATA file” on page 61..
2. Click the name of the file in the File list area.
3. Click the Options tab.

Figure 14. More Statistics information

Chapter 4. Using the Program Understanding Tool 69

For more Options information, click the More button.

See also “Options tab” on page 90 and “Viewing ADATA file information” on page 67

Viewing statistics information
1. Open the ADATA file; see “Opening an ADATA file” on page 61..
2. Click the name of the file in the File list area.
3. Click the Statistics tab.

For more Statistics information, click the More button.

See also “Statistics tab” on page 90 and “Viewing ADATA file information” on page 67

Viewing libraries information
1. Open the ADATA file; see “Opening an ADATA file” on page 61..
2. Click the name of the file in the File list area.
3. Click the Libraries tab.

For more Libraries information, click the More button.

See also “Libraries tab” on page 92 and “Viewing ADATA file information” on page 67

Removing (closing) a file
You only need to close an ADATA file if you do not want the contents of the file included in the display
control flow graph. Since you are not making changes to any ADATA file, you do not need to close files
before you exit from ASMPUT.
1. Right-click the name of the file in the file list area.
2. From the pop-up menu, click Remove.

When an ADATA file is closed, its name is removed from the file list area, any displayed source code is
no longer displayed, and the control flow graph, if it is displayed, is redrawn.

If you wish to close all ADATA files, but leave ASMPUT open, on the Main window Window menu,
click Remove All.

See also “Working with ADATA files” on page 61

Working with the control flow graph
When you work with the control graph, you can:
v Change the structure When you change the structure, ASMPUT adds or removes nodes and arcs.

– Expand or collapse layers; see “Expanding and collapsing layers” on page 71 When you expand a
layer, ASMPUT converts a three-dimensional node into component nodes and arcs.
(Three-dimensional and two-dimensional nodes are explained in “Control Flow Graph window” on
page 94.)

– Add or remove context; see “Adding and removing context” on page 77 When you remove context,
ASMPUT no longer displays the nodes that are not directly related to the selected node. These
nodes are “removed context”.

– Rrefresh or redo; see “Refreshing and redoing” on page 78 When you refresh the control flow
graph, ASMPUT redraws the top level graph as if you had just opened the Control Flow Graph
window. When you redo the control flow graph, ASMPUT redraws the current control flow graph,
adjusting the zoom level so that the entire control flow graph fits in the control flow graph area.

v Change the appearance When you change the appearance, the structure of the control flow graph
remains the same, but ASMPUT hides or shows elements, or changes their color.

70 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

– Hide or show return arcs; see “Hiding and showing return arcs” on page 79 The return arcs show
returns from calls.

– Mark or unmark nodes; see “Marking and unmarking nodes” on page 80 A marked node is colored
yellow, and remains yellow if expanded or collapsed.

v Change the view When you change the view, you make the nodes larger (for easier viewing) or smaller
(to see the larger picture), or you look at a different part of the control flow graph.
– Open and close the Overview window; see “Opening and closing the Overview window” on page

81 The Overview window shows a small copy of the control flow graph. By moving and resizing
the area box, you can zoom and scroll.

– Zoom in and out; see “Zooming” on page 82 Zooming changes the size of the nodes, but not the
structure or appearance of the control flow graph.

– Scroll; see “Scrolling” on page 84 Scrolling changes the part of the control flow graph displayed in
the control flow graph area.

v Interact with source code; see “The interaction between source code and the control flow graph” on
page 85 When you click on a node, the code corresponding to the node is highlighted in the source
code area.

The colors of the nodes and the meaning of name prefixes are explained in “Control Flow Graph
window” on page 94.

See also “Introducing ASMPUT” on page 57

Expanding and collapsing layers
When the control flow graph is initially displayed, or whenever you open a new ADATA file, the control
flow graph shows program entry nodes (cyan nodes) and unresolved external calls (gray nodes), if there
are any.

As each layer is expanded, more nodes and more arcs are displayed. The first expansion shows program
entry nodes and secondary entry nodes, the second expansion shows all the previous nodes, plus nodes
within a program, and so on.

A program entry node holds the primary entry point of the program. This is the default entry point for
the program when it is loaded and executed. It is also possible to load a module and start executing it at
other entry points. These are secondary entry points, which are held in secondary nodes.

You can expand layers, until there are no more layers to show, and most nodes are green.

You can also reverse the process, to collapse layers. As you collapse a layer, fewer nodes are displayed,
until you end up with the initial display, and can collapse no further.

You can expand or collapse one layer or all layers for the entire control flow graph. If you prefer, you can
expand or collapse one layer for just one node.

If a node is marked (yellow), when you expand or collapse the node, the resultant nodes (resulting from
expanding) or node (resulting from collapsing) retain the marking.

Figure 15 on page 72 shows a completely collapsed control flow graph.

Chapter 4. Using the Program Understanding Tool 71

Expanding one layer for the control flow graph

1. On the Control Flow Graph window View menu click Expand Layer. Alternatively, click Expand or
right-click on the white area of the graph, and on the pop-up menu click Expand Layer.
When you expand one layer, every three-dimensional node in the control flow graph is expanded by
one layer for each node. Individual nodes can be at different layers of expansion. Each node is
expanded from its own current layer. Nodes not currently displayed in the control flow graph
(because they are in removed context) are not expanded.

In Figure 15 there are eight nodes in the third row of the control flow graph. All but one of these nodes
are unresolved external call nodes (they are labeled “Unresolved” beneath each node). The remaining
node is a program entry node. In Figure 16 on page 73, which is the same control flow graph after it is
expanded by one layer, there are five nodes in the third row of the control flow graph. Three of these
nodes are secondary entry nodes (they are the darker, magenta, nodes). They come from the expansion of
the program nodes.

In most of the figures, the zoom is adjusted to provide maximum clarity. This means that only a portion
of the graph is visible.

Figure 15. A completely collapsed control flow graph

72 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Expanding all layers for the control flow graph

1. On the Control Flow Graph window View menu click Expand All Layers. Alternatively, right-click
on the white area of the graph, and on the pop-up menu click Expand All Layers.
When you expand all layers, every three-dimensional node in the control flow graph is expanded
repeatedly, until there are only two-dimensional nodes in the control flow graph. Nodes not currently
displayed in the control flow graph (because they are in removed context) are not expanded.
Some nodes that were connected directly are now connected through intermediate nodes.

Figure 17 on page 74 shows a portion of the same graph, completely expanded. All the nodes are now
two-dimensional.

Figure 16. A portion of the same control flow graph expanded by one layer

Chapter 4. Using the Program Understanding Tool 73

Collapsing one layer for the control flow graph

1. On the Control Flow Graph window View menu click Collapse Layer. Alternatively, click the
Collapse icon or right-click on the white area of the graph, and from the pop-up menu click Collapse
Layer.
When you collapse one layer, every node in the control flow graph is collapsed by one layer for each
node, except for nodes that are already completely collapsed. Individual nodes can be at different
layers of expansion. Each node is collapsed from its own current layer. If a subordinate node can be
collapsed, then a superior node is not collapsed. Nodes not currently displayed in the control flow
graph (because they are in removed context) are not collapsed.

Collapsing all layers for the control flow graph

1. On the Control Flow Graph window View menu click Collapse All Layers. Alternatively, right-click
on the white area of the graph, and from the pop-up menu click Collapse All Layers.
When you collapse all layers, each node is collapsed to the extent that the control flow graph shows
as few nodes as possible, but always shows more than one node.
For example, if the current control flow graph shows a program entry node and a secondary entry
node and nodes for lines of code, then when the control flow graph is collapsed all layers, it shows
just the program entry node and the secondary entry node.
As another example, if the current control flow graph for the same suite of programs shows a few
program entry nodes and a few secondary entry nodes and some nodes for lines of code, then when
Collapse All Layers is clicked, the nodes for the lines of code and the secondary entry nodes are
collapsed into the program entry points, because the final control flow graph displays more than one
program entry node.
Nodes not currently displayed in the control flow graph (because they are in removed context) are not
collapsed.

Figure 17. A portion of the same control flow graph, completely expanded

74 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Expanding one node in context

1. Right-click the (three-dimensional) node you want to expand.
2. From the pop-up menu, click Expand in Context.

Alternatively, double-click the (three-dimensional) node you want to expand (double-clicking a
two-dimensional node collapses it), or else, if the node is selected, on the Control Flow Graph window
Selected menu click Expand in Context.

Figure 18 shows a control flow graph with the ADDPRG node (the second row program entry node)
expanded in context. Compare this with Figure 10 on page 60, the same graph before the node was
expanded. The difference is that the secondary entry node is now displayed on the third row.

When you expand a node in context, the node is expanded one layer. All other nodes remain as they are.
The resultant control flow graph is redrawn, to accommodate the additional nodes.

Nodes not displayed in the control flow graph (because they are in removed context), are still not
displayed after the node is expanded.

Expanding one node to the window

1. Right-click the (three-dimensional) node you want to expand.
2. From the pop-up menu, click Expand to Window.

Alternatively, right-double-click the (three-dimensional) node you want to expand, or else, if the node is
selected, on the Control Flow Graph window Selected menu click Expand to Window.

Figure 18. One node expanded in context

Chapter 4. Using the Program Understanding Tool 75

When you expand a node to the window, the node is expanded one layer, and all the context for the
node is removed. The resultant control flow graph shows only the nodes and arcs that result from
expanding the selected node.

Figure 19 shows the same control flow graph after the ADDPRG node is expanded to the window. The
control flow graph displays the nodes that fall within the ADDPRG program. The top node has two lines
of text. The second line denotes a call to a secondary entry.

Collapsing in context

1. Right-click the node you want to collapse.
2. From the pop-up menu, click Collapse in Context.

Alternatively, double-click the (two-dimensional) node you want to collapse in context (double-clicking a
three-dimensional node expands it), or else, if the node is selected, on the Control Flow Graph window
Selected menu click Collapse in Context.

When you collapse a node in context, the node is collapsed one layer. All other nodes remain as they are.
You cannot collapse a node in context if the resultant control flow graph shows only one node (collapse
the node to context instead).

When you collapse in context, nodes that were not displayed in the control flow graph (because they
were in removed context) are still not displayed after the node is collapsed.

Figure 20 on page 77 shows the ADDPRG node collapsed to context. The context is just the secondary
entry node.

Figure 19. One node expanded to the window

76 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

See also “Adding and removing context” and “Working with the control flow graph” on page 70

Adding and removing context
Each node fits within its context. The context changes depends on the current layer that the node is at.

As an analogy, imagine a photograph of two football teams. If you are pointing at one football team, and
remove context, the other team is no longer shown. Point at one player within the team, and remove the
context, and only that player is shown. Point to that player's mouth, and remove context, and all that is
shown is the player's face. You do not have to move through this step by step. Instead, from the full
photograph, point at a player's thumb, and remove context, and only the player's hand is shown.

ASMPUT lets you do the same sort of thing with the control flow graph.

When you remove context, ASMPUT shows you just a part of the original control flow graph. This makes
it simpler for you to follow the control flow within the displayed elements.

When you add context, you see how the segment of program interacts with other elements in the
program, but you add complexity.

Removing context

1. Right-click a node you want to isolate from the context.
2. From the pop-up menu, click Remove Context.

Alternatively, if the node is selected, on the Control Flow Graph window Selected menu click Remove
Context.

Figure 20. The same node collapsed to context

Chapter 4. Using the Program Understanding Tool 77

In the resultant control flow graph, some nodes may have two lines of text in them. The first line of text
is, as before, the name of the entry point or the line number of the code. The second line of text is the
name of a linked node that is not displayed, because it is in the removed context.

You cannot remove context if the resultant control flow graph has only one node. In this case, consider
using the Expand to Window option, which expands the selected (three-dimensional) node by one layer,
and then removes the context.

Showing context

1. On the Control Flow Graph window View menu, click Show Context.

Alternatively, click the Show Context icon or right-click the white area of the graph, and from the pop-up
menu click Show Context.

This option is not available if there is no removed context.

Redisplayed nodes retain the same layer at which they were removed from the context.

Collapsing to context

1. On the Control Flow Graph window View menu, click Collapse to Context.

Alternatively, click the Collapse to Context icon or right-click the white area of the graph, and from the
pop-up menu click Collapse to Context.

The resultant control flow graph shows all the nodes collapsed into one, and the context for this node. In
the previous control flow graph the context was not shown.

See also “Expanding and collapsing layers” on page 71 and “Working with the control flow graph” on
page 70

Refreshing and redoing
Refreshing the control flow graph displays the graph as if you were opening the Control Flow Graph
window. The display shows the control flow graph at the top level. All marking is removed, and all
nodes are collapsed to the maximum, so that only program entry nodes and unresolved nodes are
displayed. The current node (or its collapsed equivalent) remains current.

Redoing the control flow graph displays the graph with the current structure. All the nodes that were
displayed in the control flow graph before the graph was “redone” are displayed in the graph afterwards.
The graph is displayed zoomed to the minimum magnification, which means that the entire graph is
displayed in the control flow graph area. All marking is retained, as is the currently selected node.

In either case, the display or non-display of return arcs is maintained.

Refreshing

1. On the Control Flow Graph window View menu, click Refresh.

Alternatively, click the Refresh icon, or right-click the white area of the graph, and from the pop-up
menu, click Refresh.

Redoing

1. On the Control Flow Graph window Window menu, click Layout, then click Redo Layout.

Alternatively, click the Redo icon.

78 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

See also “Working with the control flow graph” on page 70

Hiding and showing return arcs
Return arcs show how control is returned to a calling program. The return arcs have a dash double dot
pattern (—— - - —— - -).

At the highest level, the calling arc and return arc join the same two nodes. However, once layers are
expanded, a return arc often connects to a different node to the node that originated the calling arc.

When return arcs are hidden, the control flow graph has fewer lines on it, and so may be easier to follow.

Figure 21 shows a control flow graph with the return arcs hidden.

Hiding return arcs

1. On the Control Flow Graph window Window menu, click Show Return Arcs so that is it unchecked.
Alternatively, click the Show Return Arcs icon. The control flow graph is redrawn, hiding the return
arcs. Any marked nodes remain marked, and the currently selected node stays selected.

Showing return arcs

1. On the Control Flow Graph window Window menu, click Show Return Arcs so that is it checked.
Alternatively, click the Show Return Arcs icon. The control flow graph is redrawn, showing the
return arcs. Any marked nodes remain marked, and the currently selected node stays selected.

Figure 22 on page 80 shows the same graph with the return arcs displayed.

Figure 21. A control flow graph with the return arcs hidden

Chapter 4. Using the Program Understanding Tool 79

See also “Working with the control flow graph” on page 70

Marking and unmarking nodes
When a node is marked, it is colored yellow. There is no other change to the control flow graph. When a
node is unmarked, the color of the node changes to reflect the status of the node (program entry,
secondary entry, and so on).

If a node is marked, and is then expanded, all the expanded nodes are also marked. If a node is marked,
and is then collapsed, the collapsed node is also marked.

Marking a node

1. Select the node you want to mark.
2. On the Control Flow Graph window Selected menu click Mark.

Alternatively, right-click a node you want to mark, and from the pop-up menu click Mark.

Unmarking a marked node

1. Select the node you want to unmark.
2. On the Control Flow Graph window Selected menu click Unmark.

Alternatively, right-click a node you want to mark, and from the pop-up menu click Unmark.

Unmarking all marked nodes

1. On the Control Flow Graph window Selected menu click Unmark All.

Figure 22. A control flow graph with the return arcs displayed

80 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

See also “Working with the control flow graph” on page 70

Opening and closing the Overview window
The Overview window shows all the control flow graph. The shaded area box shows the part of the
control flow graph currently displayed in the control flow graph area. By moving and resizing the area
box, you can change the contents of the control flow graph area.

To open the Overview window
1. Open the control flow graph; see “Opening and closing the control flow graph window” on page 62
2. Click the Show Overview icon on the toolbar, or on the Control Flow Graph window Window menu

click Show Overview so that the option is checked. The Overview window is opened.

The ways in which the Overview window can be used to control zooming and scrolling are described in
“Zooming” on page 82 and “Scrolling” on page 84.

Figure 23 shows the Overview window displayed.

To close the Overview window

These methods work provided the Overview window is currently open.
1. Click the Show Overview icon on the toolbar, or on the Control Flow Graph window Window menu

click Show Overview so that the option is unchecked, or click the Close box of the Overview
window.

See also “Working with the control flow graph” on page 70

Figure 23. The Overview window

Chapter 4. Using the Program Understanding Tool 81

Zooming
Zooming makes no change to the structure or color of the control flow graph. Instead, it changes the size
of nodes and lettering on the control flow graph.

When you zoom in towards maximum zoom, items become larger, which means that you see less of the
complete control flow graph, but text is easier to read.

Figure 24 shows part of a control flow graph at maximum zoom.

When you zoom out towards minimum zoom, items become smaller, so you see more (or all) of the
complete control flow graph, but text becomes harder to read.

Figure 25 on page 83 shows part of the same graph at minimum zoom. The node that is second from the
top corresponds to the node at the top of the previous figure.

Figure 24. A graph at maximum zoom

82 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

The graph displayed in the Overview window remains the same size when you zoom. However, the area
box changes size. As you zoom in it becomes smaller, and as you zoom out it becomes larger.

At minimum zoom, the entire control flow graph fits in the control flow graph area.

If the control flow graph has only a few elements, you may find that the largest size and the smallest size
are the same. The intermediate levels of zoom provide magnifications between those offered by the
maximum and minimum zoom.

The zoom slider, located between the toolbar and the control flow graph area, shows the current level of
zoom. You can also use it to adjust the level of zoom. Before you can use the zoom slider, make sure it is
shown. If you hide the zoom slider, you increase the size of the control flow graph area.

Showing the zoom slider

1. On the Control Flow Graph window Window menu, click Show Zoom Slider so that it is checked.
Alternatively, click the Show Zoom Slider icon on the toolbar.

Hiding the zoom slider

1. On the Control Flow Graph window Window menu, click Show Zoom Slider so that it is unchecked.
Alternatively, click the Show Zoom Slider icon on the toolbar.

Zooming in

v On the Control Flow Graph window View menu, click Zoom In, or
v On the Control Flow Graph window View menu click Zoom In Rectangle, then click in the control

flow graph, then drag to form an outline rectangle, or

Figure 25. A graph at minimum zoom

Chapter 4. Using the Program Understanding Tool 83

v Click the Zoom In icon, or
v Drag the zoom slider to the right, or
v On the Control Flow Graph window Selected menu click Zoom In On, or
v Right-click a node, and from the pop-up menu click Zoom In On, or
v Click on the edge of the area box in the Overview window and shrink the area box, or
v Click the Zoom In Rectangle icon, then click in the control flow graph, then drag to form an outline

rectangle.

When you click Zoom In On, maximum zoom is applied. When you click Zoom In, the zoom goes up by
one level. When you zoom in by shrinking the size of the area box on the Overview window or by
clicking Zoom In Rectangle, you can zoom to intermediate levels.

When you click Zoom In Rectangle and then drag a rectangle, the area you select is magnified to fill the
control flow graph area. When you drag to select the area, the rectangle keeps the same proportions as
the control flow graph area.

If you are already at maximum zoom, the options and icon are not available.

When you click Zoom In On or Zoom In Rectangle, you zoom and scroll at the same time.

Zooming out

v On the Control Flow Graph window View menu click Zoom Out, or
v Click the Zoom Out icon, or
v Drag the zoom slider to the left, or
v On the Control Flow Graph window Selected menu click Zoom Out From, or
v On the Control Flow Graph window View menu click Zoom Out Rectangle, then click in the control

flow graph, then drag to form an outline rectangle, or
v Right-click a node, and from the pop-up menu, click Zoom Out From, or
v Click on the edge of the area box in the Overview window, and expand the area box, or
v Click the Zoom Out Rectangle icon, then click in the control flow graph, then drag to form an outline

rectangle.

When you click Zoom Out From, minimum zoom is applied. When you click Zoom Out, the zoom goes
down one level. When you zoom out by expanding the size of the area box on the Overview window, or
click Zoom Out Rectangle, you can zoom to intermediate levels.

If you are already at minimum zoom, the options and icon are not available.

See also “Working with the control flow graph” on page 70

Scrolling
Scrolling shows a different part of the control flow graph in the control flow graph window area.

You can scroll mechanically, using the scroll bars or the area box, or you can scroll by selecting an option.

Scrolling mechanically

v On the Control Flow Graph window, click and drag the horizontal scroll bar or the vertical scroll bar,
or

v On the Control Flow Graph window, right-click the point you want to move, drag the mouse pointer
to the new position, and release the mouse button, or

v On the Overview window, click on the area box and drag it to a new position.

84 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Scrolling by option

v Right-click an arc, and from the pop-up menu click Scroll to Source to select the node that is at the tail
of the arc, or click Scroll to Target to select the node that is at the head of the arc. The control flow
graph scrolls so that the selected node is in the window area.
Alternatively, double-clicking the arc is the same as clicking Scroll to Target, and right-double-clicking
the arc is the same as clicking Scroll to Source.
Alternatively, if an arc is selected, on the Control Flow Graph window Selected menu click Scroll to
Target or Scroll to Source.

v Right-click a node, and from the pop-up menu, click Center On. The control flow graph scrolls so that
the selected node is in the center of the window area. Alternatively, if a node is selected, on the
Control Flow Graph window Selected menu click Center On.

When you zoom in on a node it is centered.

When you click on lines of source code, the control flow graph is scrolled until the selected node is
displayed in the control flow graph window area. See “The interaction between source code and the
control flow graph” for more information.

See also “Working with the control flow graph” on page 70

The interaction between source code and the control flow graph
When you click on a node in the control flow graph (and thus select the node), ASMPUT highlights the
corresponding lines of code in the source code listing. When you click on a line of code in the source
code listing, ASMPUT selects the corresponding node in the control flow graph.

This means you can work between the control flow graph and the source code listing, to better
understand your program.

To gain the most benefit from this, size and position the Main and Control Flow Graph windows so that
both appear on your screen at the same time (preferably with no overlap).

Figure 26 on page 86 shows the Control Flow Graph window at the left of the screen, and the Main
window at the right of the screen. The second node in the control flow graph is the selected node. The
highlighted code in the source area is the code that corresponds to this node.

Chapter 4. Using the Program Understanding Tool 85

If you select a node on the control flow graph, then the relevant source code is always highlighted.
However, if you click on a line in the source code, the corresponding node may not be in the current
control flow graph. In this case, the highlight may move unexpectedly, not settling on the lines you
clicked. To overcome this, if you want to select a node by clicking on a line of source code, make sure
that you are showing a control flow graph of all programs, expanded to all layers.

If you click on a selected node, and thus unselect it, then the highlighting disappears from the source
code listing.

Highlighting source code from the control flow graph

1. Right click a node. The related code is highlighted in cyan in the source code listing, and the listing is
scrolled so that the highlighted text is in the middle of the source code area.

If you click a three-dimensional node, the highlighting is only for the lines that correspond to the top
two-dimensional node currently collapsed into the three-dimensional node.

If you click a node, and the code for the node was in a set of hidden expanded lines, then the lines are
shown while the node is selected, but hidden after the node is deselected.

Selecting a node from the source code

1. Click a line of source code. The related node is selected, and the code that corresponds to the top
node is highlighted in cyan.

If the node is three-dimensional, the highlighted lines do not necessarily include the line you clicked.
Instead, they are the lines that correspond to the top two-dimensional node if the three-dimensional node
was expanded to its fullest. There is a guaranteed correspondence only if the node is two-dimensional.

Figure 26. Displaying the control flow graph window and main window side-by-side

86 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

See also “Working with the control flow graph” on page 70

ASMPUT windows and window areas
ASMPUT has three different windows.

“Main window” shows the ADATA files that are open, information about these files, and a source code
listing.

From the Main window, you can open a “Control Flow Graph window” on page 94. This window shows
part or all of the control flow graph, which is for all open ADATA files. In the Control Flow Graph
window you look at the control flow graph and change its structure.

The “Overview window” on page 100 is a subsidiary of the Control Flow Graph window. It shows all
the control flow graph in a compressed form. The control box provides quick zoom and scroll control.

See also “Introducing ASMPUT” on page 57

Main window
The Main window displays text information about open XAA files. The window has three areas:
“Main window file list area”

The list of open ADATA files
“Main window source code area”

Where the source code of one source code file is listed
“Main window information notebook” on page 88

Tabs with more information about an ADATA file

For information about menu options and toolbar icons, see “Main window menu options and toolbar
icons” on page 92.

From the Main window, you control the opening and closing of ADATA files, the viewing of source code,
and the opening of the Control Flow Graph window. For details, see “Working with ADATA files” on
page 61.

You can adjust the relative sizes of the areas by dragging the thin lines between them. When you change
the size of the Main window, the areas change size proportionately.

See also “ASMPUT windows and window areas”

Main window file list area
The file list area is at the left side of the Main window. The file list area displays a list of the open
ADATA files. Files are listed in the order in which they were opened.

A particular file is highlighted by clicking on its name. Information about the highlighted file is displayed
in the “Main window information notebook” on page 88.

The source code file tags in a program are listed by clicking the + sign to the left of the file name. The
source code for a source code file is listed in the “Main window source code area” when the Source Code
tag is clicked.

See also “Main window”

Main window source code area
The source code area is at the right side of the Main window. The source code area displays the source
code that is part of an ADATA file.

Chapter 4. Using the Program Understanding Tool 87

The source code is color coded:
Dark red

Machine instructions
Violet Assembler instructions
Navy blue

Machine and assembler instruction operands
Dark green

Remarks
Brown

Comments
Magenta (pink)

Macro calls and COPY segments
Gray

Labels
Blue

Sequence numbers
Red on a light gray background

Assembly diagnostics (HLASM) or analysis messages (ASMPUT)

A light gray background indicates a diagnostic, a message, a macro expansion, or a COPY segment
expansion.

A cyan (light blue) background is the highlight applied to the lines of code in the current node. The
highlight is only applied to executable lines of code, so non-executable lines of code may be interspersed
between the highlighted lines of code. The highlight is applied even if the Control Flow Graph window
is not open. However it is not applied if the Control Flow Graph window is open, but no node is
currently selected.

In the source code area you can:
v Display and hide expanded lines; see “Showing and hiding expanded lines” on page 63
v Find text; see “Finding text in source code” on page 66
v Change the font; see “Changing font properties” on page 62

See also “Main window” on page 87

Main window information notebook
The information notebook is at the bottom of the Main window. (If it is not shown, display it by clicking
Show Info Notebook on the Window menu, so that it is checked, or by clicking the Show Notebook
icon on the toolbar.) The information notebook displays assembly-time information about an ADATA file.

By selecting a tab, you can look at:
v Job Id information; see “Job Id tab”
v HLASM file information; see “HLASM files tab” on page 89
v Assembly options; see “Options tab” on page 90
v Assembly statistics; see “Statistics tab” on page 90
v Library call information; see “Libraries tab” on page 92

The online help has a topic for each tab. The help information includes a description of each field in the
tab. In Windows, you can also get “What's This” help on the More panels by clicking the question mark
(“?”) and then clicking a field on the More panel.

See also “Main window” on page 87

Job Id tab: The Job Identification tab displays this information:

88 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Product version
The version number of the assembler that produced the associated data file, in the form V.R.M
and padded to the right with spaces. For example, C’1.4.0 ’.

PTF level
The PTF level number of the assembler that produced the associated data file

System ID
The system identification of the system on which the assembly was run

Jobname
The job name of the assembly job

Stepname
The z/OS step name of the assembly step

Procstep
The z/OS procedure step name of the assembly procedure step

The extra information shown on the More panel is the list of input files for the assembly. The information
shown for each file is:

File Name
The name of the input file

Volume
The volume serial number of the first volume on which the input file resides

Member Name
The name of the member for the input file (if applicable)

See also “Viewing Job Id information” on page 69 and “Main window information notebook” on page 88

HLASM files tab: The HLASM Files tab displays information about the files output from HLASM. The
tab itself holds counts:

Primary Object Files
The number of primary object files output

Punch Object Files
The number of secondary (punch) object files output

Print Files
The number of listing (PRINT) output files

Terminal Output Files
The number of terminal (TERM) output files

ADATA Output Files
The number of ADATA output files in this record.

The extra information shown on the More panel is the lists of output files for the assembly. For each of
the five categories, the information shown for each file is:

File No.
The assigned sequence number of the output file

File Name
The name of the output file

Volume
The volume serial number of the first volume on which the output file resides

Member Name
The name of the member for the output file (if applicable)

Chapter 4. Using the Program Understanding Tool 89

See also “Viewing HLASM files information” on page 69 and “Main window information notebook” on
page 88

Options tab: The Options tab displays information about the Assembler options in force when the
program was assembled. The tab itself holds:

Language
The language option in effect for the assembly

Linecount
The Linecount option in effect for the assembly

Optable
The OPTABLE option in effect for the assembly

SYSPARM String
The SYSPARM string being used for the assembly

PARM String
The PARM string being used for the assembly

The extra information shown on the More panel is the list of the assembler options in use when the unit
was assembled. These include any default options not specified at the assembly.

For more information about each option, see “Controlling Your Assembly with Options” in the HLASM
Programmer's Guide.

See also “Viewing options information” on page 69 and “Main window information notebook” on page
88

Statistics tab: The Statistics tab displays information about the assemble. The tab itself holds:

Primary Input Recs
The number of primary input records read for the assembly.

Library Records
The number of library records read for the assembly.

Assembly Start Time
The local time when the assembly commenced. This time is recorded after data set allocation,
storage allocation, invocation parameter processing, and other initialization processing.

Assembly Stop Time
The local time when the assembly completed.

Work File Reads
The number of work file reads for the assembly.

Work File Writes
The number of work file writes for the assembly.

Print Recs Written
The number of print records written for the assembly.

Object Recs Written
The number of object records written for the assembly.

The More panel repeats this information, and also shows:

Buffer Pool Allocation
The number of Kilobytes (KB) of storage allocated to the buffer pool.

Required In-storage
The number of Kilobytes (KB) of storage required to make the assembly an in-storage assembly.

90 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

ADATA File Writes
The number of ADATA file writes for the assembly.

ADATA Calls
The number of calls to the ADATA exit. If no exit is present, this field is zero.

ADATA Added Records
The number of records added by the ADATA exit.

ADATA Deleted Records
The number of records deleted by the ADATA exit.

ADATA Diag Msg's
The number of diagnostic messages returned by the ADATA exit. This field is zero if no exit is
present.

Library Calls
The number of calls to the LIBRARY exit. This field is zero if no exit is present.

Library Added Records
The number of records added by the LIBRARY exit. This field is zero if no exit is present.

Library Deleted Calls
The number of records deleted by the LIBRARY exit. This field is zero if no exit is present.

Library Diagnostic Msg's
The number of diagnostic messages returned by the LIBRARY exit. This field is zero if no exit is
present.

Listing Calls
The number of calls to the LISTING exit. This field is zero if no exit is present.

Listing Added Records
The number of records added by the LISTING exit. This field is zero if no exit is present.

Listing Deleted Records
The number of records deleted by the LISTING exit. This field is zero if no exit is present.

Listing Diagnostic Msg's
The number of diagnostic messages returned by the LISTING exit. This field is zero if no exit is
present.

Object Calls
The number of calls to the OBJECT exit (z/OS and CMS). This field is zero if no exit is present.

Object Added Records
The number of records added by the OBJECT exit (z/OS and CMS). This field is zero if no exit is
present.

Object Deleted Records
The number of records deleted by the OBJECT exit (z/OS and CMS). This field is zero if no exit
is present.

Object Diagnostic Msg's
The number of diagnostic messages returned by the OBJECT exit (z/OS and CMS). This field is
zero if no exit is present.

Source Calls
The number of calls to the SOURCE exit. This field is zero if no exit is present.

Source Added Records
The number of records added by the SOURCE exit. This field is zero if no exit is present.

Source Deleted Records
The number of records deleted by the SOURCE exit. This field is zero if no exit is present.

Chapter 4. Using the Program Understanding Tool 91

Source Diagnostic Msg's
The number of diagnostic messages returned by the SOURCE exit. This field is zero if no exit is
present.

Punch Calls
The number of calls to the PUNCH exit. This field is zero if no exit is present.

Punch Added Records
The number of records added by the PUNCH exit. This field is zero if no exit is present.

Punch Deleted Records
The number of records deleted by the PUNCH exit. This field is zero if no exit is present.

Punch Diagnostic Msg's
The number of diagnostic messages returned by the PUNCH exit. This field is zero if no exit is
present.

Term Calls
The number of calls to the TERM exit. This field is zero if no exit is present.

Term Added Records
The number of records added by the TERM exit. This field is zero if no exit is present.

Term Deleted Records
The number of records deleted by the TERM exit. This field is zero if no exit is present.

Term Diagnostic Msg's
The number of diagnostic messages returned by the TERM exit. This field is zero if no exit is
present.

Ext Functions Loaded
The number of functions loaded during this assembly.

See also “Viewing statistics information” on page 70 “Main window information notebook” on page 88

Libraries tab: The Libraries tab displays library information. The tab itself holds:

Total Number of Library Records
The number of libraries read from for the assembly.

Total Number of Macros/Copy Code Members
The number of macros or copy code members read from for the assembly.

The More panel shows information about each macro:

Macro Name
The name of the macro or source copy code.

Data Set Name
The name of the data set (file) from which the macro or copy member was retrieved.

Volume
The volume identification of the volume where the data set (file) resides.

DDNAME
The ddname of the library.

See also “Viewing libraries information” on page 70 and “Main window information notebook” on page
88

Main window menu options and toolbar icons: Menu options

File menu
Controls file opening, and closing ASMPUT.

92 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Open Opens an ADATA file for analysis, listing, and viewing. See “Opening an ADATA file” on
page 61 for more information.

Exit Closes ASMPUT.

Edit menu
Edits the list of open ADATA files.
Remove All

Closes and removes all open ADATA files. See “Removing (closing) a file” on page 70 for
more information.

View menu
Displays other windows
Show Graph

Displays the Control Flow Graph window. See “Opening and closing the control flow
graph window” on page 62 and “Control Flow Graph window” on page 94 for more
information.

Window menu
Controls the display of information in this window
Fonts Shows or hides the information notebook at the bottom of the window. See “Changing

font properties” on page 62 for more information.
Show Info Notebook

Changes the font used to display the source code. See “Main window information
notebook” on page 88 for more information.

Restore Defaults
Restores the default font and window size. See “Restoring defaults” on page 63 for more
information.

Help menu
Displays help information
Help Topics

Displays this online help file, showing the Contents tab. To choose a topic for display,
click on it. To expand a heading, click the + sign.

Keyboard
Displays the keyboard shortcut keys. See “Keyboard shortcuts” on page 94 for more
information.

Index Displays this online help file, showing the Index tab. To look for an index item, start
typing in the keyword. As you type letters, the highlight advances to the first word
starting with these letters. The items listed below the word show second-level entries. To
look at the topic associated with an entry, double-click the entry, or highlight it and click
Display. If there is more than one topic associated with the entry, a list box is displayed,
listing the topic headings. Select a topic by double-clicking the list. The topic is displayed
in the right panel.

About Displays a splash screen showing information about ASMPUT. In particular, this shows
the version you are running.

Pop-up menu
Display the pop-up menu by right-clicking. The contents of the menu depend on where you click:
A file name in the file list area

The Remove option removes the file from the file list area, and removes the related
components from the control flow graph. See “Removing (closing) a file” on page 70 for
more information.

The source code area
The options of this pop-up menu let you show or hide lines (see “Showing and hiding
expanded lines” on page 63, “Showing and hiding assembly diagnostics” on page 65, and
“Showing and hiding analysis messages” on page 66), and find an item of text, or the
next diagnostic or message (see “Finding text in source code” on page 66 and “Finding
the next assembly diagnostic or analysis message” on page 66).

Chapter 4. Using the Program Understanding Tool 93

Toolbar icons
Open file

See File menu Open option.
Show Notebook

See Window menu Show Info Notebook option.
Show Graph

See View menu Show Graph option.
Help See Help menu Help Topics option.

See also “Main window” on page 87

Keyboard shortcuts: The shortcut keys only work when their window has the focus. Those pertaining to
the source code listing (Ctrl+E, Ctrl+F, Ctrl+N), only work if the cursor is displayed in the source code
area.

Main window shortcuts

F3 Closes ASMPUT.

Ctrl+O
Displays the Open dialog box, so you can open an ADATA file. See “Opening an ADATA file” on
page 61 for more information.

Ctrl+E Moves the next assembly diagnostic or analysis message to the middle of the source code area.
See “Finding the next assembly diagnostic or analysis message” on page 66 for more information.

Ctrl+F Displays the Find dialog box, so you can find text in the source code listing. See “Finding text in
source code” on page 66 for more information.

Ctrl+G
Displays the Control Flow Graph window. See “Opening and closing the control flow graph
window” on page 62 for more information.

Ctrl+N
Finds the next occurrence of the find text. See “Finding text in source code” on page 66 for more
information.

Control Flow Graph window shortcuts

F3 Closes the Control Flow Graph window. Leaves the Main window open.

See also “Main window” on page 87

Control Flow Graph window
The Control Flow Graph window displays the control flow graph. The control flow graph is displayed in
the control flow graph area, which is the white area in the center of the window. A vertical and a
horizontal scroll bar provide a means of moving the control flow graph around in the control flow graph
area. The zoom slider (if shown) above the control flow graph area provides a means of zooming the
control flow graph. A menu and a toolbar are at the top of the window.

The control flow graph is a set of nodes and arcs.

A node is displayed as a rectangle. It corresponds to a contiguous group of lines of source code (see
“More about nodes” on page 58 for more information).

An arc connects two nodes. It leaves from a source node, and points to a target node.

Various controls at the edge of the window let you adjust the appearance of the control flow graph.

94 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Nodes

Nodes can have different appearances and different colors.

The different appearances are two-dimensional nodes and three-dimensional nodes. Three-dimensional
nodes have three faces. The front face is rectangular, and the three faces have different shadings, so that
the node looks like a three-dimensional rectangular box. The two-dimensional nodes have only one face,
a rectangle with rounded corners.

These nodes have this meaning:

Two-dimensional
The node cannot be expanded any more. If you collapse this node, it is replaced by a
three-dimensional node, and some nodes and arcs disappear.

Three-dimensional
The node can be expanded. When it is expanded, the node is replaced by a group of nodes and
arcs. Some of these nodes may in turn be three-dimensional, and so can be expanded. However,
eventually, every node is two-dimensional, which means that the control flow graph cannot be
expanded any more.

The different colors have these meanings:
Gray An unresolved external call.
Cyan (light blue)

A program entry point
Magenta (pink)

A secondary entry point
Yellow

A marked node
Green Any other node

Sometimes the name in a node has a prefix. The prefixes have these meanings:

> Three-dimensional cyan or magenta node containing an entry

< Three-dimensional cyan node containing a program

* Two-dimensional cyan program entry

** Two-dimensional magenta secondary entry

When the context is removed, nodes may have two lines of information. The first line is the name of the
node. The second names the call to a node in the surrounding removed context. The prefix to the name
provides further information.

The currently selected node is surrounded by a red highlight. The color of the node does not change.

If you mark a three-dimensional node, and then expand it, the nodes it expands into remain yellow,
indicating that they are marked, and any arcs that link two marked nodes become pink.

If you mark a node, and then collapse that node in context, the resultant three-dimensional node remains
yellow, indicating that it is marked. (However, if you now expand that node, only the node you have
previously marked is shown as marked.)

If you open a new ADATA file which is able to resolve an external call, then, in the redrawn control flow
graph, the node changes color, since the call becomes resolved.

In general, a node is connected to another node or nodes. However, if the node represents stand-alone
code, then the node may be neither the target nor the source for an arc.

Chapter 4. Using the Program Understanding Tool 95

Arcs

Arcs connect nodes. An arc must go from one node (the source node), to another node (the target node).

Arcs have this appearance:
A long dash (—— ——)

An internal or external call
A long dash followed by two short dashes (—— - - —— - -)

A return from a called routine
A solid line (————)

Everything else

Any arc joining two marked nodes is magenta. An arc selected by clicking it is red. Any other arc is
black.

Controls

The zoom slider above the control flow graph area controls the level of zoom. Moving it to the left makes
graph elements smaller (zoom out). When graph elements are at their smallest, the entire control flow
graph fits into the control flow graph area. Moving it to the right makes graph elements larger (zoom in).

If the control flow graph does not fit completely into the graph area, you can use the horizontal and
vertical scroll bars to move around the graph.

For information about what you can do on the Control Flow Graph window, see “Working with the
control flow graph” on page 70.

For information about menu options and toolbar icons, see “Control Flow Graph window menu options
and toolbar icons.”

See also “ASMPUT windows and window areas” on page 87

Control Flow Graph window menu options and toolbar icons
Menu options

The descriptions of layer-affecting and context-affecting options include information about when the
option is available. However, if after the (Selected or View) option is applied, just one node displayed,
then the option is not available, regardless.

For example, the Collapse in Context option of the Selected menu is available for nodes (not arcs). If you
expand a secondary entry, and then remove the context, you cannot apply the “Collapse in Context”
option to any of the nodes currently displayed, because there is no context, and the resulting graph is
only one node. If you show the context, you can then apply the “Collapse in Context” option successfully.

File menu
Controls window closing
Exit Closes the Control Flow Graph window.

Selected menu
Options applied against the selected arc or node. Most of these options are also available on the
pop-up menu you can see by right-clicking a node or arc.
Scroll to Target

Scrolls the control flow graph so that the target node to the selected arc fits within the
window area. Available when an arc is selected. See “Scrolling” on page 84 for more
information.

96 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Scroll to Source
Scrolls the control flow graph so that the source node to the selected arc fits within the
window area. Available when an arc is selected. See “Scrolling” on page 84 for more
information.

Expand to Window
Expands the selected node, and removes the context. Available when a three-dimensional
node is selected. See “Expanding and collapsing layers” on page 71 and “Adding and
removing context” on page 77 for more information.

Expand in Context
Expands the selected node, retaining the context. Available when a three-dimensional
node is selected. See “Expanding and collapsing layers” on page 71 for more information.

Remove Context
Removes all nodes and arcs except those for the selected node and directly associated
nodes. Available when a node is selected, and there is context to remove. See “Adding
and removing context” on page 77 for more information.

Collapse in Context
Collapses the selected node and associated nodes into one node, keeps the display of the
context nodes. Available when a node is selected, and there is context to collapse it in. See
“Adding and removing context” on page 77 and “Expanding and collapsing layers” on
page 71 for more information.

Zoom In On
Makes elements look larger. Not available when already at maximum zoom. See
“Zooming” on page 82 for more information.

Zoom Out From
Makes elements look smaller. Not available when already at minimum zoom. See
“Zooming” on page 82 for more information.

Center On
Scrolls the control flow graph so that the target node is in the center of the display area.
See “Scrolling” on page 84 for more information.

Mark Marks the selected node, by changing its color to yellow. Available for unmarked nodes.
See “Marking and unmarking nodes” on page 80 for more information.

Unmark
Unmarks the selected node, by changing its color from yellow to its functional color.
Available for marked nodes. See “Marking and unmarking nodes” on page 80 for more
information.

Unmark All
Unmarks all marked nodes, by changing their color from yellow to their functional color.
Even marked nodes not currently displayed are unmarked. See “Marking and unmarking
nodes” on page 80 for more information.

View menu
Options applied to the control flow graph in general. Most of these options are also available on
the pop-up menu you can see by right-clicking the white space of the graph.
Show Context

Displays the context of the elements currently displayed. Not available for the top level
graph. See “Adding and removing context” on page 77 for more information.

Collapse to Context
Collapses the currently displayed nodes into one node, and then displays the context of
this node. Only available if some context is not shown. See “Expanding and collapsing
layers” on page 71 and “Adding and removing context” on page 77 for more information.

Show Top Graph
Displays all elements, including any context that has been previously removed. Nodes are
displayed at the level they previously held. So if a node was fully collapsed before being
discarded as part of the context, it is displayed as fully collapsed when the top graph is
displayed. For this reason, the top graph may not look the same as the graph displayed

Chapter 4. Using the Program Understanding Tool 97

when the Control Flow Graph window was opened. Not available when the top level
graph is currently displayed. See “Adding and removing context” on page 77 for more
information.

Expand Layer
Expands each visible three-dimensional node by one layer. The expansion is applied node
by node. Nodes not currently displayed (discarded in the context) are not expanded. Not
available when all visible nodes are expanded to their maximum (that is, the nodes are all
two-dimensional). See “Expanding and collapsing layers” on page 71 for more
information.

Collapse Layer
All visible nodes are collapsed one layer. Not available when collapsing one layer means
that the control flow graph has only one node (use Collapse to Context instead), or if all
visible nodes are completely collapsed. See “Expanding and collapsing layers” on page 71
for more information.

Expand All Layers
All visible nodes are expanded to their maximum. The resultant control flow graph has
no three-dimensional nodes. Not available when all visible nodes are expanded to their
maximum (that is, the nodes are all two-dimensional). See “Expanding and collapsing
layers” on page 71 for more information.

Collapse All Layers
All visible nodes are completely collapsed. The resultant control flow graph has at least
two three-dimensional nodes. Not available when collapsing all layers means that the
control flow graph has only one node (use Collapse to Context instead), or if all visible
nodes are completely collapsed. See “Expanding and collapsing layers” on page 71 for
more information.

Zoom In
Expands the size of control flow graph elements. See “Zooming” on page 82 for more
information.

Zoom Out
Contracts the size of control flow graph elements. See “Zooming” on page 82 for more
information.

Zoom In Rectangle
Lets you draw a rectangle on the control flow graph. The elements in this rectangle are
then expanded to fit the control flow graph window area. See “Zooming” on page 82 for
more information.

Zoom Out Rectangle
Lets you draw a rectangle on the control flow graph. The elements in the control flow
graph window area are then contracted to fit into this rectangle, and the rest of the
control flow graph contracted to the same degree. See “Zooming” on page 82 for more
information.

Refresh
Displays the control flow graph at the top level, with all nodes completely collapsed. All
marking is removed, but the current node remains current. Always available. See
“Refreshing and redoing” on page 78 for more information.

Window menu
Controls the display of information in this window
Show Overview

Controls the display of the Overview window. See “Overview window” on page 100 for
more information.

Show Zoom Slider
Controls the display of the zoom slider. See “Zooming” on page 82 for more information.

Show Return Arcs
Controls the display of return arcs in the control flow graph. See “Hiding and showing
return arcs” on page 79 for more information.

98 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Layout/Redo Layout
Redraws the control flow graph at minimum zoom. See “Refreshing and redoing” on
page 78 for more information.

Restore Defaults
Repositions and resizes the Control Flow Graph window and the Overview window to
their default position. See “Restoring defaults” on page 63 for more information.

Help menu
Displays help information
Help Topics

Displays this online help file, showing the Contents tab. To choose a topic for display,
click on it. To expand a heading, click the + sign.

Keyboard
Displays the keyboard shortcut keys. See “Keyboard shortcuts” on page 94 for more
information.

Index Displays this online help file, showing the Index tab. To look for an index item, start
typing in the keyword. As you type letters, the highlight advances to the first word
starting with these letters. The items listed below the word show second-level entries. To
look at the topic associated with an entry, double-click the entry, or highlight it and click
Display. If there is more than one topic associated with the entry, a list box is displayed,
listing the topic headings. Select a topic by double-clicking the list. The topic is displayed
in the right panel.

Toolbar icons
Refresh

See View menu Refresh option.
Expand

See View menu Expand Layer option.
Collapse

See View menu Collapse Layer option.
Show Context

See View menu Show Context option.
Collapse to Context

See View menu Collapse to Context option.
Zoom In

See View menu Zoom In option.
Zoom Out

See View menu Zoom Out option.
Zoom In Rectangle

See View menu Zoom In Rectangle option.
Zoom Out Rectangle

See View menu Zoom Out Rectangle option.
Redo See Window menu Layout/Redo Layout option.
Show Overview

See Window menu Overview option.
Show Zoom Slider

See Window menu Show Zoom Slider option.
Show Return Arcs

See Window menu Show Return Arcs option.

Pop-up menus

You can also raise a pop-up menu, by right-clicking a node, an arc, or on the white space of the control
flow graph. The options on the pop-up raised by right-clicking a node or an arc are the same as the
options on the Selected menu. The options on the pop-up raised by right-clicking the white space of the
control flow graph are the same as the options on the View menu.

Chapter 4. Using the Program Understanding Tool 99

See also “Control Flow Graph window” on page 94

Overview window
The Overview window displays the entire control flow graph, at a much-diminished size.

The structure of the control flow graph, the color of nodes, and the appearance of arcs, are accurately
reflected in the overview graph, and the selected node is displayed with a red outline. However, the
overview graph displays no lettering.

The gray rectangle on the overview graph is the area box. It indicates which part of the control flow
graph is currently displayed in the control flow window. All colors under the area box change to
complementary colors. For example, cyan changes to red, and green changes to magenta.

The area box has the same proportions as the display area of the control flow graph. If you resize the
control flow graph window, the area box changes size.

You can move the area box around, by clicking and dragging it. When you do so, you effectively scroll
the contents of the control flow graph window.

You can change the size of the area box by clicking and dragging the edge of the box. When you do so,
you zoom the contents of the control flow graph window.

If you use other means to zoom or scroll, the area box is moved or resized in response.

When you resize the Overview window, the overview graph is resized. By this means you can enlarge or
shrink the overview graph.

For information about opening and closing the Overview window, see “Opening and closing the
Overview window” on page 81.

See also “Zooming” on page 82, “Scrolling” on page 84, and “ASMPUT windows and window areas”
on page 87

Restrictions
When you use ASMPUT, the following restrictions apply:
v The analysis engine cannot deal with branches involving an index register. This means that code using

branch tables is not analyzed correctly.
v The analysis of register usage requires further improvement. The results displayed by this version may

not be correct in all instances.
v It is not possible to analyze any program that specifies a non-zero entry point on an END statement

which involves an expression for the END statement operand. The use of a label symbol by itself is
supported.

v The Graphic Print function:
– May have problems in font selection varying in different printers.
– In multi-page mode, divides a graphic into six pages regardless of the size of the graphic.
– Only prints to A4 paper size.

v The Graphic Export function exports a graphic to a fixed-size BMP file.
v The Graphic Print function is not supported for Windows 2000 or later.
v Push buttons do not function on Windows 2000 or later.

100 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

v ASMPUT only supports HLASM Release 4 format ADATA records. If you use HLASM Release 5 to
produce the ADATA file, then the assembly must use the sample ADATA exit ASMAXADR to reformat
to Release 4 format (ASMAXADR is a sample source installed as part of HLASM for z/OS and z/VM
users).

Using online help
The Windows version of ASMPUT has two forms of online help. The first is topic help, which you access
by clicking Help Topics or Index on the Help menu, or by clicking a Help button. When you do this,
ASMPUT opens the help file, which gives you access to many topics. The second is “What's This” help.
This is accessible from the More windows of the information notebook tabs, and a few dialog boxes, and
shows you a note about the item you point at.

Using topic help
When you invoke topic help, ASMPUT displays the topic help file (Figure 27).

The right panel is the topic panel. It shows the current topic. If you invoke the help by pressing a Help
button, the current topic relates to the button you pressed. For example, the figure shows the topic that
results from pressing the Job Id tab Help button.

You can move to a different topic by clicking a hot link in a topic. A hot link is text that is underlined
and colored. The cursor changes to a pointing finger when it is on a hot link.

Figure 27. The topic help for the Job Id tab

Chapter 4. Using the Program Understanding Tool 101

The left panel has four tabs. They are:

Contents
A structured table of contents. If you click on a topic heading, the associated topic is displayed in
the topic panel. Double-click on a topic tagged with a book icon, and the underlying topics
appear or disappear.

Index The index for the help. Find a topic by typing in the keyword. As you type, the highlight moves.
Alternatively, scroll the index. When you double-click an index entry, the topic is displayed. If
there are two or more topics for the entry, select a topic from the displayed list.

Search
Type in a keyword, and click List Topics. Then select the topic you want from the resultant list.
You can search for any word the help file.

Favorites
A list of favorite topics. To add a topic to the list, display the topic in the topic area, then click
Add. Topics are listed in alphabetic order.

To show just the topic panel, click the Hide icon.

To print a selected topic, or the selected topic and the following subtopics, click the Print icon.

You can change the font of the text in the topic panel from the Internet Options of the Options menu.

Using what's this help
To invoke What's This help, click on the question mark beside the Close box. A question mark is
appended to the cursor. Then click on the item you want information about. A note is displayed. Clear
the note by clicking again.

ASMPUT messages

ASMP001S Unable to get system information.
Return code returncode.

Explanation: An operating system call failed when
attempting to obtain information about the executable
module.

User response: Refer to your operating system
documentation for information about the return code.
Possibly your system is running short of some resource
such as memory. Try closing down other applications,
or reboot the system and try running ASMPUT again.

ASMP002S Cannot open ADATA file - filename.

Explanation: The requested ADATA file filename
cannot be found.

User response: Enter a different file name, or else
select the file from a directory listing.

ASMP003E Unable to find ADATA header at offset
fileOffset.

Explanation: A valid ADATA header record was
expected, but not found. The ADATA file may be
corrupt, or may contain invalid data.

User response: Recreate the ADATA file and try again.
Ensure that the version of the High Level Assembler
being used to create the file is not higher than that of
the ASMPUT. Also ensure that the recommended
maintenance level as documented in the ASMPUT
installation instructions has been applied. If the
problem persists, report it to IBM service.

ASMP004I Skipping forward charCount characters
in ADATA file.

Explanation: Data has been skipped in the ADATA file
in attempt to find a valid header record.

User response: Recreate the ADATA file and try again.
Ensure that the version of the High Level Assembler
being used to create the file is not higher than that of
the ASMPUT. Also ensure that the recommended
maintenance level as documented in the ASMPUT
installation instructions has been applied. If the
problem persists, report it to IBM service.

ASMP005S Unable to read ADATA file at offset
fileOffset.

Explanation: A read error occurred in the ADATA file
at the specified offset.

ASMP001S • ASMP005S

102 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

User response: Recreate the ADATA file and try again.
Ensure that the version of the High Level Assembler
being used to create the file is not higher than that of
the ASMPUT. Also ensure that the recommended
maintenance level as documented in the ASMPUT
installation instructions has been applied. If the
problem persists, report it to IBM service.

ASMP006S Unable to process architecture level
adataLevel at offset fileOffset.

Explanation: This version of ASMPUT only processes
level 3 ADATA files. Either an old ADATA file is being
used, or the file is corrupt.

User response: Recreate the ADATA file and try again.
Ensure that High Level Assembler Version 1.4 is being
used to create the file, and that the recommended
maintenance level as documented in the ASMPUT
installation instructions has been applied. If the
problem persists, report it to IBM service.

ASMP007S Unidentified record type recordType at
offset fileOffset.

Explanation: An unexpected record type was found in
the ADATA file. This should not occur. The file may be
corrupt.

User response: Recreate the ADATA file and try again.
Ensure that the version of the High Level Assembler
being used to create the file is not higher than that of
the ASMPUT. Also ensure that the recommended
maintenance level as documented in the ASMPUT
installation instructions has been applied. If the
problem persists, report it to IBM service.

ASMP008S Bad ADATA record sequence at record
recordNumber.

Explanation: The ADATA records are not in the
proper sequence. The file may be corrupt.

User response: Recreate the ADATA file and try again.
Ensure that the version of the High Level Assembler
being used to create the file is not higher than that of
the ASMPUT. Also ensure that the recommended
maintenance level as documented in the ASMPUT
installation instructions has been applied. If the
problem persists, report it to IBM service.

ASMP010W Unable to load help file helpFileName.

Explanation: The help file could not be found.

User response: Check to see if the help file has been
properly installed in the ASMPUT installation directory.
If it is missing, try reinstalling ASMPUT.

ASMP012W ADATA file adataFile is already loaded.

Explanation: The specified ADATA file is already
loaded.

User response: Open another file.

ASMP013W Unassociated recordType record at record
number recordNumber.

Explanation: The specified record could not be
associated with its proper parent type. There is a
problem with the program that produced the ADATA
file.

User response: Recreate the ADATA file and try again.
Ensure that the version of the High Level Assembler
being used to create the file is not higher than that of
the ASMPUT. Also ensure that the recommended
maintenance level as documented in the ASMPUT
installation instructions has been applied. If the
problem persists, report it to IBM service.

ASMP014W This program contains assembly
diagnostics. The analysis may be
invalid.

Explanation: The assembly contains diagnostics, and a
correct analysis may not be possible.

User response: To guarantee a valid analysis, remove
assembly errors, rebuild a new ADATA file, and submit
the new file to ASMPUT for analysis.

ASMP015S This does not appear to be a valid
ADATA file.

Explanation: The file does not appear to be a valid
ADATA file.

User response: Recreate the ADATA file and try again.
Ensure that the version of the High Level Assembler
being used to create the file is not higher than that of
the ASMPUT. Also ensure that the recommended
maintenance level as documented in the ASMPUT
installation instructions has been applied. If the
problem persists, report it to IBM service.

ASMP016S Execution directory appears to be
invalid - executableName

Explanation: The directory from which ASMPUT is
being executed appears to be invalid.

User response: Examine the executableName and
confirm that it conforms to the standard operating
system rules for file naming. If it is invalid, reinstall
ASMPUT in a new directory.

ASMP006S • ASMP016S

Chapter 4. Using the Program Understanding Tool 103

ASMP017E Missing External Symbol Dictionary
record for ESDID esdid at record number
recordNumber.

Explanation: The specified record is missing. There is
a problem with the program that produced the ADATA
file.

User response: Recreate the ADATA file and try again.
Ensure that the version of the High Level Assembler
being used to create the file is not higher than that of
the ASMPUT. Also ensure that the recommended
maintenance level as documented in the ASMPUT
installation instructions has been applied. If the
problem persists, report it to IBM service.

ASMP018E Symbol redefinition has occurred at
record number recordNumber.

Explanation: A symbol has been defined twice. There
is a problem with the program that produced the
ADATA file.

User response: Recreate the ADATA file and try again.
Ensure that the version of the High Level Assembler
being used to create the file is not higher than that of
the ASMPUT. Also ensure that the recommended
maintenance level as documented in the ASMPUT
installation instructions has been applied. If the
problem persists, report it to IBM service.

ASMP019E Symbol cross reference to non-existent
statement statementNumber at record
number recordNumber.

Explanation: A cross reference record refers to a
non-existent statement. There is a problem with the
program that produced the ADATA file.

User response: Recreate the ADATA file and try again.
Ensure that the version of the High Level Assembler
being used to create the file is not higher than that of
the ASMPUT. Also ensure that the recommended
maintenance level as documented in the ASMPUT
installation instructions has been applied. If the
problem persists, report it to IBM service.

ASMP020E Invalid machine instruction at statement
number statementNumber.

Explanation: The machine instruction record is
malformed. Either the ADATA record is corrupt, or the
assembler is outputting machine instruction records
containing bad instructions.

User response: Recreate the ADATA file and try again.
Ensure that the version of the High Level Assembler
being used to create the file is not higher than that of
the ASMPUT. Also ensure that the recommended
maintenance level as documented in the ASMPUT
installation instructions has been applied. If the
problem persists, report it to IBM service.

ASMP021E Attempt to change parent of label from
fromLabel to toLabel.

Explanation: This is an internal graph analysis error. It
should not occur.

User response: Report the problem to IBM service.

ASMP022E Unable to determine branch target.

Explanation: This is an internal flow analysis error. It
should not occur.

User response: Report the problem to IBM service.

ASMP023E Multiple recordType records found at
record number recordNumber.

Explanation: Multiple records of the specified type
have been found. This is an error in the ADATA file.

User response: Recreate the ADATA file and try again.
Ensure that the version of the High Level Assembler
being used to create the file is not higher than that of
the ASMPUT. Also ensure that the recommended
maintenance level as documented in the ASMPUT
installation instructions has been applied. If the
problem persists, report it to IBM service.

ASMP024W Missing branch at end of flow block at
statement number statementNumber.

Explanation: Flow analysis has detected a code block
which apparently ends without any exit point, such as
a branch or a following code block.

User response: Examine the assembler source code
and determine whether this is a genuine problem, and
if necessary correct the problem and re-assemble the
code.

ASMP025W Unable to initialize the HTML Help
system.

Explanation: The HTML Help system could not be
initialized. It may not be correctly installed.

User response: Ensure that the file HHCTRL.OCX
exists in the Windows system directory. If necessary,
re-install HTML Help. The most recent version can be
found at http://msdn.microsoft.com/workshop/
author/htmlhelp/.

ASMP026E Missing Library record for
cross-reference record number
recordNumber.

Explanation: This is an error in the ADATA file
structure.

User response: Recreate the ADATA file and try again.
Ensure that the version of the High Level Assembler
being used to create the file is not higher than that of

ASMP017E • ASMP026E

104 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

the ASMPUT. Also ensure that the recommended
maintenance level as documented in the ASMPUT
installation instructions has been applied. If the
problem persists, report it to IBM service.

ASMP027E Missing Source record for
cross-reference statement
statementNumber at record number
recordNumber.

Explanation: This is an error in the ADATA file
structure.

User response: Recreate the ADATA file and try again.
Ensure that the version of the High Level Assembler
being used to create the file is not higher than that of
the ASMPUT. Also ensure that the recommended
maintenance level as documented in the ASMPUT
installation instructions has been applied. If the
problem persists, report it to IBM service.

ASMP028E Node label is not a child of parent node
parentLabel.

Explanation: This is an internal graph analysis error. It
should not occur.

User response: Report the problem to IBM service.

ASMP029E Node label has no parent but has a
sibling siblingLabel.

Explanation: This is an internal graph analysis error. It
should not occur.

User response: Report the problem to IBM service.

ASMP030S Internal node not found for program
programName.

Explanation: This is an internal graph analysis error. It
should not occur.

User response: Report the problem to IBM service.

ASMP031S Node label not found in hash table.

Explanation: This is an internal graph analysis error. It
should not occur.

User response: Report the problem to IBM service.

ASMP032I End of search.

Explanation: A find request has reached the end of the
source file. The requested text has not been found.

User response: Try another find request if the required
information has not been found.

ASMP033E A complex symbol expression has been
specified on the END statement. This is
not currently supported, so the program
cannot be correctly analyzed.

Explanation: Only simple variable names are
supported as entry points on the END statement.
Complex expressions are permitted by the assembler,
but are not currently supported by ASMPUT.

User response: Change the expression on the END
statement, if possible, and re-assemble the program.

ASMP034S Internal error. Source arc arcLabel not
linked to source node nodeLabel.

Explanation: This is an internal graph analysis error. It
should not occur.

User response: Report the problem to IBM service.

ASMP035S Internal error. Unlinked source arc label
has sibling links.

Explanation: This is an internal graph analysis error. It
should not occur.

User response: Report the problem to IBM service.

ASMP036S Internal error. Target arc arcLabel not
linked to target node nodeLabel.

Explanation: This is an internal graph analysis error. It
should not occur.

User response: Report the problem to IBM service.

ASMP037S Internal error. Unlinked target arc
arcLabel has sibling links.

Explanation: This is an internal graph analysis error. It
should not occur.

User response: Report the problem to IBM service.

ASMP038E ADATA files assembled with the
XOBJECT option cannot be processed.
Please re-assemble the program with the
NOXOBJECT option.

Explanation: The XOBJECT option omits essential
information from the ADATA file, so the analysis of the
program cannot be performed using this option.

User response: Re-assemble the program with the
NOXOBJECT option.

ASMP039W registerType Register registerNumber may
be referenced before it has been set.

Explanation: Flow analysis has detected that a register
may be used by an instruction without previously
being set by another instruction.

ASMP027E • ASMP039W

Chapter 4. Using the Program Understanding Tool 105

User response: Examine the assembler source code
and determine whether this is a genuine problem, and
if necessary correct the problem and re-assemble the
code.

ASMP040W Instruction contains a reference to an
absolute memory address.

Explanation: The instruction is referencing a location
in the first 4K of low memory.

User response: Examine the assembler source code
and determine whether this is a genuine problem, and
if necessary correct the problem and re-assemble the
code.

ASMP041W Instruction uses register registerNumber
as an index register but has no base
register.

Explanation: The instruction has coded a base register
using the index register specification. This has no effect
on the final result of the instruction.

User response: Examine the assembler source code
and determine whether this is a genuine problem, and
if necessary correct the problem and re-assemble the
code.

ASMP042E Unable to resolve the second operand
address.

Explanation: This is an internal flow analysis error. It
should not occur.

User response: Report the problem to IBM service.

ASMP043E Nominal value operand lengths in
ADATA storage record are inconsistent.

Explanation: This is an internal flow analysis error. It
should not occur.

User response: Report the problem to IBM service.

ASMP044W Instruction reference is not aligned to an
operand boundary.

Explanation: The instruction is referencing an operand
which is not properly aligned to the operand's size.

User response: Examine the assembler source code
and determine whether this is a genuine problem, and
if necessary correct the problem and re-assemble the
code.

ASMP045E Invalid ADATA Source record type
recordType at record number
recordNumber.

Explanation: This is an error in the ADATA file
structure.

User response: Recreate the ADATA file and try again.
Ensure that the version of the High Level Assembler
being used to create the file is not higher than that of
the ASMPUT. Also ensure that the recommended
maintenance level as documented in the ASMPUT
installation instructions has been applied. If the
problem persists, report it to IBM service.

ASMP046E Invalid ADATA Source record originType
origin sourceType at record number
recordNumber.

Explanation: This is an error in the ADATA file
structure.

User response: Recreate the ADATA file and try again.
Ensure that the version of the High Level Assembler
being used to create the file is not higher than that of
the ASMPUT. Also ensure that the recommended
maintenance level as documented in the ASMPUT
installation instructions has been applied. If the
problem persists, report it to IBM service.

ASMP047W Expected operand size (instructionSize) is
greater than the referenced operand size
(operandSize).

Explanation: The expected operand for this instruction
is greater than the actual operand size (for example, a
load instruction referencing a halfword operand). This
may be valid if it is necessary to span multiple
operands.

User response: Examine the assembler source code
and determine whether this is a genuine problem. If it
is, correct the problem and re-assemble the code.

ASMP048W Code may be unreachable.

Explanation: Flow analysis was unable to reach this
code section. This may be due to the inability of flow
analysis to resolve an indexed branch table.

User response: Examine the assembler source code
and determine whether this is a genuine problem, and
if necessary correct the problem and re-assemble the
code.

ASMP049W Instruction is referencing code as data.

Explanation: An instruction is referencing assembled
data as a code location, such as the target of a branch.

User response: Examine the assembler source code
and determine whether this is a genuine problem, and
if necessary correct the problem and re-assemble the
code.

ASMP040W • ASMP049W

106 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

ASMP050W registerType Register registerNumber may
not contain a valid address.

Explanation: The instruction is using the contents of
the specified register as a location address, but flow
analysis has determined that the register may contain
other data not representing a location address.

User response: Examine the assembler source code
and determine whether this is a genuine problem, and
if necessary correct the problem and re-assemble the
code.

ASMP051W A data statement has been detected
within a code sequence.

Explanation: An assembler statement which generates
data has been detected within the code stream.

User response: Examine the assembler source code
and determine whether this is a genuine problem, and
if necessary correct the problem and re-assemble the
code.

ASMP052W Serialization and checkpoint-
synchronization function. Degraded
performance may occur.

Explanation: This special form of the BCR instruction
has been detected, and may lead to reduced
performance if it has been used unnecessarily.

User response: Examine the assembler source code
and determine whether this is a genuine problem, and
if necessary correct the problem and re-assemble the
code.

ASMP053E Unable to find executable code at entry
address entryAddress.

Explanation: There is no executable code at the
specified entry address.

User response: Examine the assembler source code
and determine whether this is a genuine problem, and
if necessary correct the problem and re-assemble the
code.

ASMP054E Unable to find original static flow
record for statement statementNumber.

Explanation: This is an internal flow analysis error. It
should not occur.

User response: Report the problem to IBM service.

ASMP055E MarkAncestors found bottom node label
with missing AsmNode.

Explanation: This is an internal graph analysis error. It
should not occur.

User response: Report the problem to IBM service.

ASMP056W Node layering cannot assign nodeCount
nodes to a layer. They are assigned to
the highest layer.

Explanation: This is an internal graph analysis error. It
should not occur.

User response: Report the problem to IBM service.

ASMP057W Duplicate external entry entryLabel point
detected.

Explanation: Two external entry points with the same
name have been detected.

User response: Remove the ADATA file containing the
duplicate entry point from the analysis.

ASMP058E Unable to find external reference entry
for V-constant id externalID.

Explanation: This is an error in the ADATA file
structure.

User response: Recreate the ADATA file and try again.
Ensure that the version of the High Level Assembler
being used to create the file is not higher than that of
the ASMPUT. Also ensure that the recommended
maintenance level as documented in the ASMPUT
installation instructions has been applied. If the
problem persists, report it to IBM service.

ASMP059W Source file compilation unit unitNumber
contains no code or data.

Explanation: There is no code or data in the file.

User response: Examine the assembler source code
and determine whether this is a genuine problem, and
if necessary correct the problem and re-assemble the
code.

ASMP060E Internal error. Island/layer label has only
one child node childLabel.

Explanation: This is an internal graph analysis error. It
should not occur.

User response: Report the problem to IBM service.

ASMP061E Internal error. Bottom node label has no
island.

Explanation: This is an internal graph analysis error. It
should not occur.

User response: Report the problem to IBM service.

ASMP050W • ASMP061E

Chapter 4. Using the Program Understanding Tool 107

108 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Chapter 5. Using the Cross-Reference Facility

The Cross-Reference Facility (ASMXREF) is a flexible source code cross-referencing tool to help you
determine variable and macro usage, and to locate specific uses of arbitrary strings of
characters.ASMXREF reads libraries for symbols, macros, and tokens and generates reports to help you
evaluate the search results.

As well as its value in maintaining applications,ASMXREF helps you quickly identify selected fields of
interest.

ASMXREF provides token scanning facilities for source code in the languages such as:
v Assembler
v C
v C++
v COBOL
v FORTRAN
v PL/I
v REXX

For details on all the languages supported by each report see Table 19 on page 137.

ASMXREF saves any informational or error messages in a message file (for details see “ASMXREF
Messages” on page 158).

You can use ASMXREF to generate the following reports:

Control Flow (CF)
The CF report tabulates all intermodule program references as a function of member or entry
point name. It can list references either in the order of the members referring to the subject entry
point or the entry point names referred by the subject member, depending on the sort order.

For each part processed, the CF report can handle up to 256 internal procedure names and 1024
entry point names.

Reference names that exceed 64 characters are truncated.

ASMXREF classifies each reference by type. The classification is language specific. For details see
“Control flow (CF) report” on page 138.

Lines of Code (LOC)
Provides a count, arranged by part and by component, of the number of source lines and
comments in the part, and the shipped source instructions (SSI), which are the number of
instructions within each part scanned, both executable and non-executable, that are not spaces or
comments. As well, the report shows the changed source instructions (CSI), which are the number
of unique SSI that have been modified in each part categorized by added, changed, deleted,
moved, and so on. In addition, the LOC Report provides a summary report of CSI arranged by
programmer.

Lines of OO Code (LOOC)
Provides, for C++, the Lines of Code (LOC) per Class and per Object, and Objects per Class.

Macro Where Used (MWU)
Identifies calls to all macros, functions invoked, and all copy books copied and included. The
report includes the type and frequency of the use of the macro, or function, and the reference.
This report identifies external referenced entities. These entities can be subroutine calls, macro
invocations or the inclusion of copy books. For details see “Macro Where Used (MWU) report”
on page 147.

© Copyright IBM Corp. 1992, 2013 109

Spreadsheet Oriented (SOR)
Shows occurrences of tokens in the search library. This report processes the default set of tokens,
provided withASMXREF , which contains useful fields of interest, such as DATE, and YY/MM/DD.
You can supplement the default tokens with your own tokens, or turn off processing of the
defaults and replace them with your own token list. You can specify tokens that ASMXREF is to
include in the search generically (with wildcards), or explicitly (with the exact characters
ASMXREF is to include in the search). You must specify exclude tokens explicitly. The report is in
a comma-delimited format that you can import into a spreadsheet application such as Lotus 1-2-3.

When you run the ASMXREF scan phase for the TWU and SOR reports, ASMXREF generates the
Tagged Source Program (TSP). The ASMXREF report phase uses the TSP to create the TWU and
SOR reports. The TSP contains the original source code interspersed with ASMXREF generated
comment records in the syntax of the language scanned. These comment records contain both the
token string encountered and a cumulative count of the number of times ASMXREF has found
the token so far in the source file. For details on the Spreadsheet Oriented report see
“Spreadsheet Oriented Report (SOR)” on page 148. For details on the TSP see “Tagged Source
Program (TSP)” on page 154.

Symbol Where Used (SWU)
Lists all the symbols (variables or macros) used in the source code and the type of reference to
each symbol. For details see “Symbol Where Used (SWU) report” on page 149.

Token Where Used (TWU)
Shows occurrences of tokens in the search library. This report processes the default set of tokens,
provided withASMXREF , which contains useful fields of interest, such as DATE, and YY/MM/DD.
You can supplement the default tokens with your own tokens, or turn off processing of the
defaults, and replace them with your own token list. You can specify tokens that ASMXREF is to
include in the search either generically (with wildcards), or explicitly (using the exact characters
ASMXREF is to include in the search). You must specify exclude tokens explicitly.

When you run the ASMXREF scan phase for the TWU and SOR reports, ASMXREF generates the
Tagged Source Program (TSP). The ASMXREF report phase uses the TSP to create the TWU and
SOR reports. The TSP contains the original source code interspersed with ASMXREF generated
comment records in the syntax of the language scanned. These comment records contain both the
token string encountered and a cumulative count of the number of times ASMXREF has found
the tokens so far in the source file. For details on the TWU report see “Token Where Used (TWU)
report” on page 153. For details on the TSP report see “Tagged Source Program (TSP)” on page
154.

Invoking the Cross-Reference Facility
ASMXREF runs in two phases:

Scan The scan phase extracts information from the specified library to create intermediate data files.
During the scan phase ASMXREF uses:
v A control file: on z/OS, in or identified with the SYSIN DD statement; on z/VSE, in SYSIPT or

identified with an ASSIGN SYSIPT statement; on CMS, a file with a file type of CNTL. The
control file contains statements that specify the library to scan, the source files to include or
exclude, and the reports to create. For details on the control statements see “ASMXREF Control
Statements” on page 128.

v A token statement file (XRFTOKN) that contains the tokens you have specified for the TWU
and SOR reports. For details on the token statements, see “ASMXREF Token Statement” on
page 131.

v A language and default token file (XRFLANG) that contains:
– The languages supported by ASMXREF.
– The language-specific verbs excluded from the ASMXREF scan phase.

110 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

– The default token statements used by the TWU and SOR reports. You can turn off the
processing of the default tokens with the TOKEN NODEFLT statement, as described in
“ASMXREF Token Statement” on page 131.

For a description of the XRFLANG file, see “ASMXREF XRFLANG Statements” on page 134.

ASMXREF scans the requested source files and writes the necessary data to an intermediate data
file for each requested report.

Report
The report phase uses the intermediate data files to generate each report.

ASMXREF runs on z/OS, CMS, and z/VSE. The following sections describe how to invoke ASMXREF on
each of these platforms.

Invoking ASMXREF on z/OS
on z/OS, you invoke ASMXREF as a batch program using Job Control Language (JCL). The following
z/OS files are supplied with ASMXREF:

Table 15. z/OS Files Supplied with ASMXREF

Filename Contents

ASMXRUN Sample z/OS JCL that invokes the supplied cataloged procedures.

ASMXSCAN A cataloged procedure that runs the program ASMXREF.

ASMXRPT A cataloged procedure that runs the program ASMXREP.

XRFLANG A sample XRFLANG file containing:

v The languages supported byASMXREF and a sample of language-specific exclude
verbs.

v The default tokens.

XRFTOKN A sample XRFTOKN file containing a comment record.

ASMXREF A program that scans the specified libraries and generates intermediate data files.

ASMXREP A program that reads the intermediate data files and creates the required reports.

When creating the TWU and SOR reports, ASMXREF searches the source files for the default tokens
specified in the XRFLANG file and for any tokens you have specified in the XRFTOKN file. If you need
your own tokens make a copy of the sample token statement (XRFTOKN) file supplied with ASMXREF.
Enter the token statements you need, one per line.

If you have write access to the XRFLANG file you can modify the default tokens in this file. You can also
change, or add, the verbs under the language segment header. Generally, the XRFLANG file is modified
to suit your environment after installation and the file need not change. Add any additional tokens that
you require to your XRFTOKN file. For details on customizing the XRFLANG file see “ASMXREF
XRFLANG Statements” on page 134.

For a description of the format of the token statements see “ASMXREF Token Statement” on page 131.

The following sections describe how to run the supplied procedures.

z/OS JCL Example
The simplified z/OS JCL in Figure 28 on page 112 shows how to create the CF, LOC, LOOC, MWU, SWU,
SOR, and TWU reports. Before running this example, edit the lines highlighted by numbers (such as �1�)
as described in the instructions following the example listing. For a full listing of the procedures supplied
with ASMXREF, see “Sample procedures” on page 115.

Chapter 5. Using the Cross-Reference Facility 111

Note: ASMXREF dynamically allocates data sets, therefore you do not need to allocate DD statements.

//ASMXRUN JOB <JOB CARD PARAMETERS> �1�
//
//**
//* *
//* Licensed Materials - Property of IBM *
//* *
//* 5692-234 *
//* *
//* (C) Copyright IBM Corp. 1992, 2008. All Rights Reserved. *
//* *
//* US Government Users Restricted Rights - Use, *
//* duplication or disclosure restricted by GSA ADP *
//* Schedule Contract for IBM Corp. *
//* *
//**
//* *
//* ASMXRUN JOB *
//* *
//* THIS SAMPLE JCL WILL INVOKE THE ASMXSCAN AND ASMXRPT PROCEDURES. *
//* *
//* CAUTION: THIS IS NEITHER A JCL PROCEDURE NOR A COMPLETE JOB. *
//* BEFORE USING THIS JOB, YOU WILL HAVE TO MAKE THE FOLLOWING *
//* MODIFICATIONS: *
//* *
//* 1. CHANGE THE JOB CARD TO MEET YOUR SYSTEM REQUIREMENTS *
//* 2. CHANGE #jcllib TO BE THE NAME OF THE USER JCL LIBRARY DATASET. *
//* 3. CHANGE #user TO BE THE USER NAME *
//* 4. CHANGE #user.source TO BE THE SOURCE LIBRARY TO SCAN *
//* 5. CHANGE #source.name TO BE THE SOURCE MEMBER NAME. *
//* 6. CHANGE #lang TO BE THE LANGUAGE OF THE SOURCE MEMBER *
//* (E.G. ASM FOR ASSEMBLER SOURCE) *
//* *
//**
//* NOTE: UNCOMMENT THE FOLLOWING STATEMENT IF THE ASMXREF AND *
//* ASMXRPT PROCEDURES ARE PLACED IN YOUR USER JCL LIBRARY *
//* #jcllib RATHER THEN THE SYSTEM PROCEDURE LIBRARIES. *
//**
//*JCL JCLLIB ORDER=(#jcllib) �2�
//*

Figure 28. Sample z/OS ASMXREF JCL (part 1 of 3)

112 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

//**
//* STEP 1 CREATE INTERMEDIATE FILE *
//**
//STEP1 EXEC ASMXSCAN,PARM.ASMXREF=’NODUP’,USER=#user, �3�
// ASMPRFX=#hlq
//SYSIN DD * �4�
* SAMPLE CONTROL FILE FOR XREF
*

LIBRARY LIB=#user.source,TYPE=PDS
INCLUDE MOD=#source.name,LANGUAGE=#lang

*
REPORT REPORT=CF CONTROL FLOW
REPORT REPORT=LOC LINES OF CODE
REPORT REPORT=LOOOC LINES OF OO CODE
REPORT REPORT=MWU WHERE/WHAT USED
REPORT REPORT=SOR SPREAD SHEET ORIENTED
REPORT REPORT=SWU SYMBOL WHERE USED
REPORT REPORT=TWU TOKEN WHERE USED

/*
//***
//* STEP 1A DELETION OF INTERMEDIATE FILE IN CASE STEP1 FAILS. *
//* THIS WILL ALLOW THE JOB TO BE RERUN WITHOUT MANUAL *
//* DELETION OF A DUPLICATE DATASET. *
//***
//DEL EXEC PGM=IDCAMS,COND=(0,EQ)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DELETE #user.TWU.TAGGED.FILE �5�
/*
//***
//* STEP 2 THIS PRODUCES THE CONTROL FLOW REPORT. *
//***
//STEP2 EXEC ASMXRPT,REPORT=CF,RECLEN=143,BLKSIZE=1430,USER=#user,
// RPARM=’60 MAC’,COND=(0,NE),ASMPRFX=#hlq
//SYSINOU DD SYSOUT=*
//*
//***
//* STEP 3 THIS PRODUCES THE LINES OF CODE REPORT. *
//***
//STEP3 EXEC ASMXRPT,REPORT=LOC,RECLEN=145,BLKSIZE=1450,USER=#user,
// RPARM=’60 MOD’,COND=(0,NE),ASMPRFX=#hlq
//SYSINOU DD SYSOUT=*
//*
//***
//* STEP 4 THIS PRODUCES THE LINES OF OO CODE REPORT. *
//* NOTE: UNCOMMENT THE FOLLOWING STATEMENTS IF THE LOOC REPORT IS *
//* REQUIRED. THIS IS AVAILABLE FOR THE CPP LANGUAGE. *
//***
//*STEP4 EXEC ASMXRPT,REPORT=LOOC,RECLEN=99,BLKSIZE=990,USER=#user,
//* RPARM=’60’,COND=(0,NE),ASMPRFX=#hlq
//*SYSINOU DD SYSOUT=*
//*
//***
//* STEP 5 THIS PRODUCES THE MODULE WHERE USED (MWU) REPORT *
//***
//STEP5 EXEC ASMXRPT,REPORT=MWU,RECLEN=96,BLKSIZE=3936,USER=#user,
// RPARM=’60 MAC’,COND=(0,NE),ASMPRFX=#hlq
//SYSINOU DD SYSOUT=*
//*

Figure 29. Sample z/OS ASMXREF JCL (part 2 of 3)

Chapter 5. Using the Cross-Reference Facility 113

�1� Add the job parameters to meet your system requirements.

�2� If you store the ASMXSCAN or ASMXRPT procedures in the JCL library rather than the system
procedure library, remove the comment characters on this line, and then replace #jcllib with the
data set name of the JCL library.

�3� Replace NODUP with the options you need for the ASMXREF run, and replace #user with your
userid.

EXEC ASMXSCAN runs the procedure ASMXSCAN, which runs the program
ASMXREF.ASMXREF requires that you specify at least one option with the PARM parameter. For
details of the options available with ASMXREF see “ASMXREF Options” on page 134. The format
of the ASMXREF statement is:

�� //stepname EXEC ASMXSCAN

�

,

,PARM.ASMXREF= ' option '

,USER= user
�

�
,ASMPRFX= hlq

��

//***
//* STEP 6 THIS PRODUCES THE SYMBOL WHERE USED (SWU) REPORT *
//***
//STEP6 EXEC ASMXRPT,REPORT=SWU,RECLEN=93,BLKSIZE=3999,USER=#user,
// RPARM=’60 SYM’,COND=(0,NE),ASMPRFX=#hlq
//SYSINOU DD SYSOUT=*
//*
//***
//* STEP 7 THIS PRODUCES THE TOKEN WHERE USED (TWU) REPORT *
//* NOTE: THE LAST STEP TO REFERENCE THE SYSINDS DATASET *
//* FOR THE TWU OR SOR REPORT SHOULD SPECIFY *
//* DISP=(OLD,DELETE) *
//***
//STEP7 EXEC ASMXRPT,REPORT=TWU,RECLEN=80,BLKSIZE=80,USER=#user, �6�
// RPARM=’’,COND=(0,NE),ASMPRFX=#hlq
//SYSINDS DD DSN=*.STEP1.ASMXREF.XRFTWU,DISP=(OLD,KEEP)
//SYSINOU DD SYSOUT=*
//*
//***
//* STEP 8 THIS PRODUCES THE SPREADSHEET ORIENTED REPORT (SOR). *
//* NOTE: THE LAST STEP TO REFERENCE THE SYSINDS DATASET *
//* FOR THE TWU OR SOR REPORT SHOULD SPECIFY *
//* DISP=(OLD,DELETE) IF YOU DON NOT WISH TO KEEP THE *
//* TASF FILE. *
//***
//STEP8 EXEC ASMXRPT,REPORT=SOR,RECLEN=80,BLKSIZE=80,USER=#user
// RPARM=’, ’’’,COND=(0,NE),ASMPRFX=#hlq
//SYSINDS DD DSN=*.STEP1.ASMXREF.XRFTWU,DISP=(OLD,DELETE)
//***
//* NOTE: COMMENT THE FOLLOWING STATEMENT IF THE USER DOES NOT *
//* REQUIRE A SPREADSHEET DATASET TO BE CREATED. *
//***
//SYSINOU DD SYSOUT=*
//

Figure 30. Sample z/OS ASMXREF JCL (part 1 of 3)

114 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

�4� Enter the ASMXREF control statements you need, either immediately following the SYSIN DD *
statement, as in the sample JCL shown in Figure 28 on page 112, or enter the name of the data set
that contains the control statements. For details on the control statements, see “ASMXREF Control
Statements” on page 128.

�5� Replace #user with your userid.

�6� Replace #user with your userid and specify any options that you need for each report in RPARM.
Run this procedure for each report that you need. The format of the statement is:

�� //step EXEC ASMXRPT , REPORT= CF
LOC
LOOC
MWU
SOR
SWU
TWU

, RPARM= '
(1)

format

�

�
(1) (2)

sort_order
(3)

sep_char
(3)

t_delim

' �

� , RECLEN= record_length , BLKSIZE= block_size
,USER= user

�

�
,ASMPRFX= hlq

��

Notes:

1 These options are not available for the SOR report.

2 This option not required for the LOOC report.

3 These options are available only for the SOR report.

For details of the reports available see “Understanding the reports” on page 137. For details of
the options available, see “ASMXREP Options” on page 136. You must specify only one report
with this statement.

Note: All the parameters are positional. You must enter them in the order shown above, or you
can enter just the REP parameter and leave the other parameters blank. If you enter the
parameters in the wrong order ASMXREF issues an error message.

Sample procedures
The following figures show the two sample procedures supplied withASMXREF . After installing
ASMXREF your systems programmer must copy these procedures into your procedure library and
modify them to suit your environment. Once modified, use the sample JCL shown in Figure 28 on page
112 to invoke the procedures. If the names of the procedures have changed, modify the JCL to reflect the
change.

Chapter 5. Using the Cross-Reference Facility 115

�1� You require this DD statement only for the TWU and SOR reports if you need to supplement, or
replace, the default tokens with your own tokens. Replace
&ASMPRFX..SASMSAM2(ASMXTOKN) with the name of the data set containing your token
statements.

If the default tokens are sufficient, and additional tokens are not required, replace
DISP=SHR,DSN=&ASMPRFX..SASMSAM2(ASMXTOKN) with DUMMY. For example:

//**
//* Licensed Materials - Property of IBM *
//* *
//* 5696-234 5647-A01 *
//* *
//* (C) Copyright IBM Corp. 1992, 2008. All Rights Reserved. *
//* *
//* US Government Users Restricted Rights - Use, *
//* duplication or disclosure restricted by GSA ADP *
//* Schedule Contract with IBM Corp. *
//* *
//**
//**
//* *
//* ASMXSCAN PROC *
//* *
//* THIS SAMPLE JCL PROC IS INVOKED FROM THE ASMXRUN SAMPLE JCL. *
//* IT INVOKES THE ASMXREF PROGRAM. *
//* *
//* *
//**
//ASMXSCAN PROC SYSOUT=’*’,
// USER=USER,
// ASMPRFX=HLA
//ASMXREF EXEC PGM=ASMXREF,REGION=4M
//*
//STEPLIB DD DISP=SHR,DSN=&ASMPRFX..SASMMOD2
//*
//XRFCF DD DSN=&&CF, DATA FOR CONTROL FLOW REPORT
// DISP=(NEW,PASS),UNIT=SYSALLDA,SPACE=(TRK,(0,10),RLSE)
//XRFLOC DD DSN=&&LOC, DATA FOR LINES OF CODE REPORT
// DISP=(NEW,PASS),UNIT=SYSALLDA,SPACE=(TRK,(0,10),RLSE)
//XRFLOOC DD DSN=&&LOOC, DATA FOR LINES OF OO CODE REPORT
// DISP=(NEW,PASS),UNIT=SYSALLDA,SPACE=(TRK,(0,10),RLSE)
//XRFMWU DD DSN=&&MWU, DATA FOR MACRO WHERE USED REPORT
// DISP=(NEW,PASS),UNIT=SYSALLDA,SPACE=(TRK,(0,10),RLSE)
//XRFSWU DD DSN=&&SWU, DATA FOR SYMBOL WHERE USED REPORT
// DISP=(NEW,PASS),UNIT=SYSALLDA,SPACE=(TRK,(0,20),RLSE)
//XRFSWUO DD DSN=&&SWUO, DATA FOR SYMBOL WHERE USED REPORT
// DISP=(NEW,PASS),UNIT=SYSALLDA,SPACE=(TRK,(0,20),RLSE)
//XRFMDLOG DD DSN=&&MDLO,
// DISP=(NEW,PASS),UNIT=SYSALLDA,SPACE=(TRK,(0,20),RLSE)
//XRFTWU DD DSN=&USER..TWU.TAGGED.FILE,
// DCB=(LRECL=80,BLKSIZE=3200,DSORG=PS),
// SPACE=(CYL,(5,1),RLSE),
// UNIT=SYSALLDA,
// DISP=(NEW,CATLG)
//XRFSYMLB DD DUMMY
//XRFSCIP DD DUMMY
//XRFTST DD DUMMY
//SYSPRINT DD SYSOUT=&SYSOUT
//XRFTOKN DD DISP=SHR,DSN=&ASMPRFX..SASMSAM2(ASMXTOKN) �1�
//XRFLANG DD DISP=SHR,DSN=&ASMPRFX..SASMSAM2(ASMXLANG) �2�
//SYSIN DD DSN=NULLFILE,DISP=SHR

Figure 31. Sample ASMXSCAN procedure

116 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

//XRFTOKN DD DUMMY

For details on the token statements see “ASMXREF Token Statement” on page 131.

If you are not creating the TWU or SOR reports remove this statement.

�2� Replace &ASMPRFX..SASMSAM2(ASMXLANG) with the name of the data set containing the
XRFLANG file. For details of the XRFLANG file see “ASMXREF XRFLANG Statements” on page
134.

Invoking ASMXREF on CMS

On CMS you invoke ASMXREF with REXX EXECs.ASMXREF is supplied with the following CMS files:

Table 16. CMS Files Supplied with ASMXREF

File name File type Contents

ASMXSCAN EXEC A REXX EXEC that runs the program ASMXREF.

ASMXRPT EXEC A REXX EXEC that runs the program ASMXREP.

//**
//* Licensed Materials - Property of IBM *
//* *
//* 5696-234 5647-A01 *
//* *
//* (C) Copyright IBM Corp. 1992, 2008. All Rights Reserved. *
//* *
//* US Government Users Restricted Rights - Use, *
//* duplication or disclosure restricted by GSA ADP *
//* Schedule Contract with IBM Corp. *
//* *
//**
//**
//* *
//* ASMXRPT PROC *
//* *
//* THIS SAMPLE JCL PROC IS INVOKED FROM THE ASMXRUN SAMPLE JCL. *
//* IT INVOKES THE ASMXRPT PROGRAM. *
//* *
//* *
//**
//ASMXRPT PROC REPORT=, A VALID 2-3 LETTER REPORT ACRONYM
// RPARM=, REPORT PARAMETERS
// RECLEN=, RECORD LENGTH
// BLKSIZE=, BLOCK SIZE
// SYSOUT=’*’, SYSOUT CLASS
// SPACE=5, REPORT SPACE IN TRACKS
// USER=USER, USER ID OR HIGH LEVEL QUALIFIER
// ASMPRFX=HLA HIGH LEVEL QUALIFIER FOR TOOLKIT LIBRARY
//*
//ASMXRPT EXEC PGM=ASMXREP,REGION=3M,
// PARM=(’&REPORT &RPARM ’)
//STEPLIB DD DISP=SHR,DSN=&ASMPRFX..SASMMOD2
//SYSPRINT DD SYSOUT=&SYSOUT
//SYSINDS DD DSN=&&&REPORT,DISP=(OLD,PASS)
//SYSINOU DD DSN=&USER..XREFOUT.&REPORT,
// DISP=(NEW,CATLG),UNIT=SYSALLDA,
// DCB=(RECFM=FBA,LRECL=&RECLEN,BLKSIZE=&BLKSIZE),
// SPACE=(TRK,(&SPACE,5),RLSE)

Figure 32. Sample ASMXRPT procedure

Chapter 5. Using the Cross-Reference Facility 117

Table 16. CMS Files Supplied with ASMXREF (continued)

File name File type Contents

ASMXREF MODULE A program that scans the specified libraries and creates intermediate
data files.

ASMXREP MODULE A program that reads the intermediate data files and creates the
required reports.

ASMTEST CNTL A sample control file.

ASMTEST DATATOKN A sample token statement (XRFTOKN) file.

ASMTEST EXEC A sample source list file.

ASMTEST DEFAULTS Contains the default ASMXREF options.

ASMTEST DATALANG A sample XRFLANG file that contains:

v The languages supported byASMXREF and a sample of
language-specific exclude verbs.

v The default tokens used by the TWU and SOR reports.

ASMXSEP EXEC A REXX EXEC that splits the TSP into its component files. For a
description of splitting the TSP see “Tagged Source Program (TSP)”
on page 154.

Take the following steps to run ASMXREF:
1. Before running ASMXREF make a copy of the following information files:

v ASMTEST CNTL, the sample control file
v ASMTEST DATATOKN, the sample token statement (XRFTOKN) file (used only with the TWU and

SOR reports where it is optional)
v ASMTEST EXEC, the sample source list file
v ASMTEST DEFAULTS, the default options file
v ASMTEST DATALANG, the sample language (XRFLANG) file

2. Modify the details in each of these files to suit your ASMXREF run.
3. Save each of the files with a new file name. They must all have the same file name, but retain the

existing file type. For example:
MYXREF CNTL
MYXREF DATATOKN
MYXREF EXEC
MYXREF DEFAULTS
MYXREF DATALANG

Refer to the following sections for details of the information required in each of these files.
4. Remove the comment characters from the appropriate FILEDEF XRFTOKN statement in the

ASMXSCAN EXEC. For details of this statement see “ASMXREF Token Statement File” on page 119.
5. When the information files have been created, run the ASMXSCAN EXEC to create the intermediate

data files.
6. Run the ASMXRPT EXEC to create each report that you need.

For details on the format of the EXEC commands and details of the files created by these EXECs, see
“ASMXSCAN EXEC” on page 122 and “ASMXRPT EXEC” on page 122.

ASMXREF Control File
The control file contains the control statements for your ASMXREF run.

Make a copy of the sample control file supplied with ASMXREF and enter the control statements you
need for your ASMXREF run. Enter each control statement on a separate line, starting in column one. You
can give the file any valid file name, but the file type must be CNTL.

118 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

For an example of a control file, named ASMTEST CNTL A, see Figure 33.

For full details of the control statements you can use with ASMXREF see “ASMXREF Control Statements”
on page 128.

ASMXREF Token Statement File
The token statement (XRFTOKN) file contains your token statements for theASMXREF run.

Use this file only when creating the TWU or SOR reports and you need to specify tokens in addition to
the default tokens in the XRFLANG file. When ASMXREF runs the scan phase it searches for the default
tokens specified in the XRFLANG file and for any additional tokens you have specified in the XRFTOKN
file.

Check the XRFTOKN file definition statements in ASMXSCAN EXEC:
v If the default tokens are sufficient and additional tokens are not required, or when running reports

other than the TWU or SOR, modify the file definition statements as follows:
IssueFileDefs:
/*’FILEDEF XRFTOKN DISK’ FileName ’DATATOKN’ WorkMode */

’FILEDEF XRFTOKN DUMMY’

v If you require tokens in the XRFTOKN file modify the file definition statements as follows:
IssueFileDefs:
’FILEDEF XRFTOKN DISK’ FileName ’DATATOKN’ WorkMode
/*’FILEDEF XRFTOKN DUMMY’ */

When you need to supplement or replace the default tokens with your own tokens, make a copy of the
sample token (XRFTOKN) file supplied with ASMXREF. Enter the token statements you need, one per
line. For details of the default tokens see “ASMXREF XRFLANG Statements” on page 134. For details of
the token statements you can use see “ASMXREF Token Statement” on page 131.

Save your token file with the same file name as the control file and a file type of DATATOKN.

Figure 34 shows an example of a token statement in a file named ASMTEST DATATOKN A.

ASMXREF Source List File
Contains the names of the source files that ASMXREF scans.

* Sample control file for ASMXREF
*
LIBRARY LIB=ASMTEST,TYPE=CMS,LANGUAGE=ASM
*
REPORT REPORT=CF CONTROL FLOW
REPORT REPORT=LOC LINES OF CODE
REPORT REPORT=LOOC LINES OF OO CODE
REPORT REPORT=TWU TOKEN WHERE USED
REPORT REPORT=MWU MACRO WHERE USED
REPORT REPORT=SWU SYMBOL WHERE USED

Figure 33. Example control file for CMS ASMXREF EXEC

* Sample token statement file for ASMXREF
TOKEN INC=’ABC’

Figure 34. Example token statement file for CMS ASMXREF EXEC

Chapter 5. Using the Cross-Reference Facility 119

Make a copy of the sample source list file supplied with ASMXREF and enter the file names of the files
you needASMXREF to scan. Give the source list file a file type of EXEC, with any file name you choose,
but for consistency it is advisable to give it the same name as the control file. You must specify this file
name on the LIB parameter of the LIBRARY control statement. For details, see “ASMXREF Control
Statements” on page 128.

The format of each line in the source list file is:
&1 &2 filename filetype filemode

where filename, filetype, and filemode identify a source file to be scanned. The following example scans files
with the file name ASMSRC and a file type of ASSEM on any file mode:
&1 &2 ASMSRC ASSEM *

All source files must be written in the same language for eachASMXREF run.

Default options file
Contains the default options for ASMXREF andASMXREP .

Make a copy of this file; give it the same file name as the control file and a file type of DEFAULTS.

You can change some of the default options in this file, but ASMXREF does not allow you to change
others. Comment lines in the file indicate which options you can change.

If you need to modify any of these options change them to suit your ASMXREF run, and save the file.
For details of the options available see “ASMXREF Options” on page 134 and “ASMXREP Options” on
page 136.

120 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

ASMXREF Language File
Contains a list of the languages supported by ASMXREF and exclude verbs (words) specific to the
language.ASMXREF excludes the verbs (words) when it scans a source file in the specified language. The
file also contains the default token statements.

Make a copy of this file; give it the same file name as the control file and a file type of DATALANG.

You can modify, or add to, the language-specific exclude words and the default token list.ASMXREF only
supports the languages supplied in the file, therefore you cannot add any other language.

For details on the default tokens supplied with ASMXREF and the supported languages see “ASMXREF
XRFLANG Statements” on page 134.

* ** *
* Licensed Materials - Property of IBM *
* *
* 5696-234 *
* *
* (C) Copyright IBM Corp. 1975, 2008. All Rights Reserved. *
* *
* US Government Users Restricted Rights - Use, *
* duplication or disclosure restricted by GSA ADP *
* Schedule Contract with IBM Corp. *
* *
* ** *
* ---*
* This file contains Local Defaults for ASMXSCAN and ASMXRPT EXEC *
* procedures. *
* Each assignment statement must remain in proper REXX format. *
* *
* Any line beginning with an asterisk, is a comment and ignored. *
* *
* Please read the instructions preceding each group of parameters. *
* *
* ASMXSCAN and ASMXRPT will use the ASMTEST DEFAULTS file found in *
* the normal CMS search sequence. *
* Note: ASMTEST DEFAULTS is the supplied defaults file. *
* ---*
*
* ---*
* The following defaults cannot be changed. *
* ---*
DefaultASMXModule = ’ASMXREF’
DefaultReportModule = ’ASMXREP’
DefaultOpcodeTable = ’ASMOP370’
* ---*
* The following Defaults MAY be changed. *
* ---*
DefaultDuplicates = ’DUP’
DefaultMessageLevel = ’4’
DefaultPageLength = ’60’
DefaultWorkMode = ’A’
DefaultCNTLMode = ’*’
DefaultReturnMsg = ’NO’
*

Figure 35. Default options file for ASMXREF EXEC

Chapter 5. Using the Cross-Reference Facility 121

ASMXSCAN EXEC
The ASMXSCAN EXEC runs the scan phase. This searches the source files listed in the source list file and
creates intermediate data files named filename DATArpt A, where filename is the name of the control file
and rpt is the report acronym. ASMXSCAN uses the options in the filename DEFAULTS A file, where
filename is the same name as the control file. The format of the ASMXSCAN EXEC command is as
follows:

�� ASMXSCAN control_file
A
mode ��

where control_file is the name of the control file.

For example:
ASMXSCAN ASMTEST A

The previous example searches the source files listed in the file ASMTEST EXEC A, using the control
statements stored in the control file ASMTEST CNTL A, and generates an intermediate data file for each
of the required reports.

When using the control file in Figure 33 on page 119ASMXREF creates output files named ASMTEST
DATACF, ASMTEST DATALOC, ASMTEST DATATWU, ASMTEST DATAMWU, and ASMTEST
DATASWU. The file ASMTEST DATATWU contains the TSP for both the TWU and SOR reports.

ASMXRPT EXEC
The ASMXRPT EXEC runs the ASMXREF report phase, creating an output file for the requested report.
The name of this file is filename OUTrpt A, where filename is the same file name as the control file and rpt
is the report acronym. You can only specify one report each time you run the EXEC, so you must run the
EXEC for every report required. The format of the command is as follows:

�� ASMXRPT file_name CF
LOC
LOOC
MWU
SOR
SWU
TWU

��

where filename is the name of the scan phase control file.

In the following example ASMXRPT uses the input file named ASMTEST DATATWU A, and creates the
TWU report in a file named ASMTEST OUTTWU A.
ASMXRPT ASMTEST TWU

Invoking ASMXREF on z/VSE
On z/VSE, you invoke ASMXREF as a batch program.ASMXREF is supplied with the following z/VSE
files:

122 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Table 17. z/VSE Files Supplied with ASMXREF

Filename Contents

ASMXRUN A sample z/VSE JCL job which invokes the supplied programs.

ASMXREF A program that scans specified libraries and generates intermediate data files.

ASMXREP A program that reads the intermediate data files and creates the required report.

XRFLANG A sample XRFLANG file containing:

v The languages supported byASMXREF and a sample of language-specific exclude
verbs.

v The default tokens.

XRFTOKN A sample token statement file containing a comment statement.

ASMXJC2S JCL which catalogs the XRFLANG and XRFTOKN file names in the VSAM catalog.

When creating the TWU and SOR reports, ASMXREF searches the source files for the default tokens
specified in the XRFLANG file and for any tokens you have specified in the XRFTOKN file. If you need
your own tokens make a copy of the sample token statement (XRFTOKN) file supplied with ASMXREF.
Enter the token statements you need, one per line. If you do not need to supplement the default tokens,
enter just a comment line in the XRFTOKN file.

If you have write access to the XRFLANG file you can modify the default tokens in this file. You can also
change, or add, the verbs under the language segment header in this file. Generally, the XRFLANG file is
modified to suit your environment after installation and the file need not change. Add any additional
tokens that you require to your XRFTOKN file.

For details of the format of the token statement see “ASMXREF Token Statement” on page 131. For
details of the default tokens supplied with ASMXREF see “ASMXREF XRFLANG Statements” on page
134.

The following sections describe the job control statements required to run these programs.

Note: After installing ASMXREF, or if you change the XRFLANG orXRFTOKN files, you must copy the
contents of the files into VSAM managed SAM files.ASMXREF is supplied with a sample JCL job, named
ASMXJC2S, that runs this job. This JCL copies the contents from the librarian members (using '* $$ SLI')
into VSAM managed SAM files. if you rerun this job change the DLBL statements from
DISP=(NEW,KEEP) to DISP=(OLD,KEEP).

z/VSE JCL example
The simplified JCL in Figure 36 on page 124 shows how to create the CF, LOC, LOOC, MWU, SWU,
TWU, and SOR reports. Before running this example edit the lines highlighted by numbers (such as �1�)
as described in the instructions following Figure 36 on page 124.

Chapter 5. Using the Cross-Reference Facility 123

@ $$ JOB JNM=ASMXRUN,LDEST=(*,USERID),CLASS=0 �1�
// JOB GSCAN
* ---
* NOTE 1: PLEASE CHANGE ALL OCCURRENCES OF "@" CHARACTER TO "*".
* ---
* ** *
* Licensed Materials - Property of IBM *
* *
* 5696-234 *
* *
* (C) Copyright IBM Corp. 1975, 2008. All Rights Reserved. *
* *
* US Government Users Restricted Rights - Use, *
* duplication or disclosure restricted by GSA ADP *
* Schedule Contract with IBM Corp. *
* *
* ** *
ON $ABEND GOTO LOGIT
ON $CANCEL GOTO LOGIT

// UPSI 1
// OPTION JCANCEL,LOG,LINK,PARTDUMP
// LIBDEF *,SEARCH=(xref.test) �2�
/*
// DLBL XRFLANG,’asmxref.langfile’,,VSAM,CAT=cat_name,DISP=(OLD,KEEP) �3�
// DLBL XRFTOKN,’asmxref.tokenfile’,,VSAM,CAT=cat_name,DISP=(OLD,KEEP)�4�
// DLBL XRFCF,’%%XRFCF’,0,VSAM,DISP=(NEW,KEEP), C

RECORDS=(1000,500),CAT=cat_name,RECSIZE=143
// DLBL XRFLOC,’%%XRFLOC’,0,VSAM,DISP=(NEW,KEEP), C

RECORDS=(1000,500),CAT=cat_name,RECSIZE=145
// DLBL XRFLOOC,’%%XRFLOOC’,0,VSAM,DISP=(NEW,KEEP), C

RECORDS=(1000,500),CAT=cat_name,RECSIZE=99
// DLBL XRFMDLO,’%%XRFMDLO’,0,VSAM,DISP=(NEW,KEEP), C

RECORDS=(1000,500),CAT=cat_name,RECSIZE=8192
// DLBL XRFSWU,’%%XRFSWU’,0,VSAM,DISP=(,KEEP), C

RECORDS=(1000,500),CAT=cat_name,RECSIZE=93
// DLBL XRFSWUO,’%%XRFSWUO’,0,VSAM,DISP=(,KEEP), C

RECORDS=(1000,500),CAT=cat_name,RECSIZE=8192
// DLBL XRFMWU,’%%XRFMWU’,0,VSAM,DISP=(,KEEP), C

RECORDS=(1000,500),CAT=cat_name,RECSIZE=96
// DLBL XRFTWU,’%%XRFTWU’,0,VSAM,DISP=(NEW,KEEP), C

RECORDS=(1000,500),CAT=cat_name,RECSIZE=80
// EXEC ASMXREF,SIZE=(ASMXREF,2M),PARM=’options’ �5�
* SAMPLE CONTROL FILE FOR ASMXREF
*

LIBRARY LIB=xref.sample,TYPE=VSE,MEMTYPE=n �6�
INCLUDE MOD=asmtest,LANGUAGE=language

*
*

REPORT REPORT=CF
REPORT REPORT=LOC
REPORT REPORT=LOOC
REPORT REPORT=MWU
REPORT REPORT=SWU
REPORT REPORT=TWU
REPORT REPORT=SOR

/*

Figure 36. Sample ASMXREF z/VSE JCL (part 1 of 3)

124 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

IF $RC > 0 THEN
GOTO LOGIT
/*
// DLBL SYSPRT,’%%SYSPRT’,0,VSAM,DISP=(NEW,KEEP), C

RECORDS=(1000,500),CAT=cat_name,RECSIZE=8192
// DLBL SYSINDS,’%%XRFSWU’,0,VSAM,DISP=(OLD,DELETE), C

RECORDS=(1000,500),CAT=cat_name,RECSIZE=93 ──┐
// EXEC ASMXREP,PARM=’SWU 60 SYM’ │
/* │
IF $RC > 0 THEN │
GOTO LOGIT │
/* │
// DLBL SYSPRT,’%%SYSPRT’,0,VSAM,DISP=(NEW,KEEP), │C

RECORDS=(1000,500),CAT=cat_name,RECSIZE=8192 │
// DLBL SYSINDS,’%%XRFMWU’,0,VSAM,DISP=(OLD,DELETE), │C

RECORDS=(1000,500),CAT=cat_name,RECSIZE=96 │
// EXEC ASMXREP,PARM=’MWU 60 MAC’ │ �7�
/* │
IF $RC > 0 THEN │
GOTO LOGIT │
/* │
// DLBL SYSPRT,’%%SYSPRT’,0,VSAM,DISP=(NEW,KEEP), │C

RECORDS=(1000,500),CAT=cat_name,RECSIZE=8192 │
// DLBL SYSINDS,’%%XRFCF’,0,VSAM,DISP=(OLD,KEEP), │C

RECORDS=(1000,500),CAT=cat_name,RECSIZE=143 │
// EXEC ASMXREP,PARM=’CF’
/* │
IF $RC > 0 THEN │
GOTO LOGIT │
/* │
// DLBL SYSPRT,’%%SYSPRT’,0,VSAM,DISP=(NEW,KEEP), │C

RECORDS=(1000,500),CAT=cat_name,RECSIZE=8192 │
// DLBL SYSINDS,’%%XRFLOC’,0,VSAM,DISP=(OLD,KEEP), │C

RECORDS=(1000,500),CAT=cat_name,RECSIZE=145 │
// EXEC ASMXREP,PARM=’LOC’ │
/* │
IF $RC > 0 THEN │
GOTO LOGIT │
/* │
* NOTE : IF "LOOC REPORT" IS REQUIRED. EXECUTE THE FOLLOWING │
* STEP BY UNCOMMENTING THE FOLLOWING. │
* LOOC REPORT IS AVAILABLE FOR CPP PROGRAMS. │
* // DLBL SYSINDS,’%%XRFLOOC’,0,VSAM,DISP=(OLD,KEEP), │C
* RECORDS=(1000,500),CAT=cat_name,RECSIZE=99 │
* // EXEC ASMXREP,PARM=’LOOC 60’ │
* /* │
* IF $RC > 0 THEN │
* GOTO LOGIT │
/* │

/* │
IF $RC > 0 THEN │
GOTO LOGIT │
/* │
// DLBL SYSPRT,’%%SYSPRT’,0,VSAM,DISP=(NEW,KEEP), │C

RECORDS=(1000,500),CAT=cat_name,RECSIZE=8192 │
// DLBL SYSINDS,’%%XRFTWU’,0,VSAM,DISP=(OLD,KEEP), │C

RECORDS=(1000,500),CAT=cat_name,RECSIZE=80 │
// EXEC ASMXREP,PARM=’TWU’ │
/* │
IF $RC > 0 THEN │
GOTO LOGIT │
/* │
// DLBL SYSPRT,’%%SYSPRT’,0,VSAM,DISP=(NEW,KEEP), │C

RECORDS=(1000,500),CAT=cat_name,RECSIZE=8192 │
// DLBL IJSYSPH,’SOR.DATA’,0,SD │
// EXTENT SYSPCH,SYSWK2,1,0,5110,15 │ �8�

ASSGN SYSPCH,DISK,VOL=SYSWK2,SHR │
// DLBL SYSINDS,’%%XRFTWU’,,VSAM,CAT=cat_name │
// EXEC ASMXREP,PARM=’SOR’ ──────┘

Figure 37 Sample ASMXREF z/VSE JCL (part 2 of 3)

Chapter 5. Using the Cross-Reference Facility 125

Replace cat_name, throughout the JCL, with the name of your VSAM catalogs.

�1� Replace node with the node, and userid with your user ID.

�2� Replace xref.test with the name of the ASMXREF executable sublibrary.

�3� Replace asmxref.langfile with the name of the XRFLANG file. See the note in “Invoking ASMXREF
on z/VSE” on page 122.

For details of the XRFLANG file see “ASMXREF XRFLANG Statements” on page 134.

�4� You require this DLBL statement only for the TWU and SOR reports; you can remove it for other
reports.

When you need to supplement, or replace, the default tokens with your own tokens replace
asmxref.tokenfile with the name of the file containing your token statements. See the note in
“Invoking ASMXREF on z/VSE” on page 122. If the default tokens are sufficient, and additional
tokens are not required, enter only a comment statement in the XRFTOKN file.

�5� Replace options with any options that you need for your ASMXREF run.

The EXEC ASMXREF runs the programASMXREF .ASMXREF needs you to specify at least one
PARM option with the EXEC ASMXREF statement. The ASMXREF control statements can follow

/*
CLOSE SYSPCH,FED

/*
// DLBL IJSYSIN,’SOR.DATA’,0,SD
// EXTENT SYSIPT,SYSWK2,1,0,5110,15 �8�

ASSGN SYSIPT,DISK,VOL=SYSWK2,SHR
// EXEC LIBR,PARM=’ACC S=XREF.XREFN;CAT SOR.A R=Y’
/*

CLOSE SYSIPT,FEC
/*
IF $RC > 0 THEN
GOTO LOGIT
/*
@ $$ PUN DISP=I,PRI=6,CLASS=A
// ASSGN SYSIPT,SYSRDR
// EXEC IESINSRT
#/ JOB ASMXRCAT
// EXEC LIBR,SIZE=256K,PARM=’ACC S=XREF.XREFN’
@ $$ END
// UPSI 1
// DLBL XRFTWU,’%%XRFTWU’,0,VSAM,DISP=(OLD,KEEP),CAT=cat_name
// EXEC DITTO,SIZE=512K
$$DITTO SC FILEIN=XRFTWU
/*
// EXEC IESINSRT
#&
@ $$ END
/*
/. LOGIT
// UPSI 1
// DLBL SYSINDS,’%%XRFTWU’,0,VSAM,DISP=(OLD,DELETE), C

RECORDS=(1000,500),CAT=cat_name,RECSIZE=80
// EXEC DITTO
$$DITTO SET DATAHDR=NO
$$DITTO SPR FILEIN=SYSINDS
/*
// EXEC LISTLOG
/&
@ $$ EOJ

Figure 38. Sample ASMXREF z/VSE JCL (part 3 of 3)

126 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

the EXEC statement in SYSIPT with each statement on a separate line, as shown in the sample
JCL, or you can assign SYSIPT to a file containing the control statements. You must follow the
last control statement with the SYSRDR termination control characters /*.

The sample JCL supplied with ASMXREF includes the statement MEMTYPE=A. If this is not
correct change to the correct member type.

For details of the options available with ASMXREF, see “ASMXREF Options” on page 134;for
details of the control statements, see “ASMXREF Control Statements” on page 128.

The format of the command is:

�� // EXEC ASMXREF, SIZE=nnn , PARM = �

,

' option ' ��

�6� See “ASMXREF Control Statements” on page 128 for details of statements.

�7� Enter the options required for eachASMXREP run. The sample JCL shows valid ASMXREP
options.

You must run the EXEC ASMXREP for every report that you need. The format of the statement
is:

�� // EXEC ASMXREP , PARM= ' CF
LOC
LOOC
MWU
SOR
SWU
TWU

(1)
format

(1) (2)
sort_order

�

�
(3)

sep_char
(3)

t_delim

' ��

Notes:

1 These options are not available for the SOR report.

2 This option not required for the LOOC report.

3 These options are available only for the SOR report.

Note: All the parameters are positional. You must enter them in the order shown above, or you
can enter just the report parameter and leave the other parameters blank. If you enter the
parameters in the wrong order ASMXREF issues an error message.

For details of the options available see “ASMXREP Options” on page 136, and for details of the
reports available see “Understanding the reports” on page 137. You must specify only one report
with this statement.

�8� Change the EXTENT cards to point to free space.

Chapter 5. Using the Cross-Reference Facility 127

ASMXREF Control Statements

*
An asterisk (*) character in column one indicates a comment statement.

Library
You can abbreviate LIBRARY to L.

You must specify one, and only one, LIBRARY statement in the control file for each ASMXREF scan run.
The minimum requirement with the LIBRARY statement is the LIB parameter that specifies the library
ASMXREF scans. The following parameters are valid with the LIBRARY control statement:

LANGUAGE
Specifies the language of the input source files. You can specify only one language for each
ASMXREF run, therefore all source files in the ASMXREF run must be in the same language. If
you do not specify the LANG parameter ASMXREF uses the default language of assembler. The
following table lists the supported languages and the associated keyword.

Table 18. XRFLANG Supported Languages

Language LANGUAGE=keyword

Assembler ASM

Assembler 86 ASM86

C C

C++ CPP

CLIST CLIST

COBOL COBOL

FORTRAN FORTRAN

Generic GENERIC

ISPF Panels IPN

ISPF Panels PANELS

ISPF Skeletons SKE

ISPF Skeletons SKELS

MASM MASM

MODULA MODULA

MODULA2 MODULA

MODULA3 MODULA

z/OS or z/VSE JCL JCL

OS/2 Command CMD

OS/2 DEF DEF

OS/2 IPF IPF

OS/2 MAK MAKE

OS/2 RC RC

OS/2 UID UID

Panels PANELS

PASCAL PASCAL

PL/I PLI

128 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Table 18. XRFLANG Supported Languages (continued)

Language LANGUAGE=keyword

QMF QMFQUERY

QMFQUERY QMFQUERY

REXX REXX

RPG RPG

SCRIPT SCRIPT

SQL QMFQUERY

LIB on z/OS and z/VSE, this specifies the names of the PDS (z/OS) or library (z/VSE) to be
scanned.ASMXREF scans all source files in the PDS or library unless it encounters an INCLUDE
or EXCLUDE control statement.

On CMS this specifies the name of the source list file that contains a list of the files to be
scanned. The source list file must have a file type of EXEC. For details on the source list file see
“ASMXREF Source List File” on page 119.

The LIB parameter is required.

MEMTYPE
z/VSE only. Specifies the source member type. If you do not specify a source member
typeASMXREF defaults the member type to A for the library specified with the LIB parameter.

TYPE The type of library ASMXREF scans. Valid types are:
PDS (Default) An z/OS partitioned data set.
SEQ An z/OS sequential data set.
VSE A z/VSE Librarian library.ASMXREF requires this when running on z/VSE.
CMS A CMS file. ASMXREF requires this when running on CMS.

z/OS Example:
LIBRARY LANGUAGE=COBOL,LIB=COBOL.SOURCE,TYPE=PDS

z/VSE Example:
LIBRARY LANGUAGE=ASM,LIB=COMMON.XREF,TYPE=VSE,MEMTYPE=D

CMS Example:
LIBRARY LANGUAGE=PLI,LIB=SOURCE,TYPE=CMS

Include
You can abbreviate INCLUDE to I.

on z/OS and z/VSE the INCLUDE statement defines the members of the PDS (z/OS) or library (z/VSE),
specified with the LIBRARY LIB statement, that ASMXREF includes in the scan. When you specify a
member with the INCLUDE statement ASMXREF scans only that member. If the INCLUDE statement is
omitted,ASMXREF scans all the members in the specified library except those members excluded with
the EXCLUDE statement.

ASMXREF ignores the INCLUDE statement on CMS as ASMXREF scans only source files listed in the
source list file.

Specify the following parameter with the INCLUDE control statement:

MOD Specifies the module to include.

Example:

Chapter 5. Using the Cross-Reference Facility 129

INCLUDE MOD=FILENAME

Exclude
You can abbreviate EXCLUDE to E.

on z/OS and z/VSE the EXCLUDE statement defines the members of the PDS (z/OS) or library (z/VSE),
specified with the LIBRARY LIB statement, that are excluded from the scan. If the EXCLUDE statement is
omitted, ASMXREF scans all the members in the PDS or library specified with the LIBRARY LIB
statement, unless you specify an INCLUDE statement.

ASMXREF ignores this statement on CMS as ASMXREF scans only source files listed in the source list
file.

Specify the following parameter with the EXCLUDE control statement:

MOD Specifies the module to exclude.

Example:
EXCLUDE MOD=FILENAME

Parm
You can abbreviate PARM to P.

Overrides processing default values. The following parameters are valid with the PARM statement:
ITBSIZE

Default 50 000. Maximum number of tokens that ASMXREF can handle for one source statement.
Minimum number 500.

LOGSIZE
Default 50 000. Maximum number of characters that ASMXREF can handle in one statement.
Minimum number 1 000.

MWUSIZE
Default 1 000. Maximum number of macros that ASMXREF can handle in the Macro Where Used
(MWU) report. Minimum number 100.

OOSIZE
Default 2 000. Maximum number of OO objects and classes that ASMXREF can handle for each
module processed. Minimum number 100.

SWUSIZE
Default 10 000. Maximum number of symbols that ASMXREF can handle in the Symbol Where
Used (SWU) report. Minimum number 500.

Example:
PARM ITBSIZE=100 000

Report
You can abbreviate REPORT to R.

Specifies the format of the reports you require.ASMXREF requires at least one REPORT statement in the
control file. Specify the following parameter with this control statement:

REPORT
The name of the required report. Valid reports are:
CF Control Flow Report
LOC Lines of Control Report
LOOC Lines of OO Code Report
MWU Macro Where Used Report

130 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

SOR Spreadsheet Oriented Report
SWU Symbol Where Used Report
TWU Token Where Used Report

You can specify only one report on each REPORT statement. For details on the reports available
see “Understanding the reports” on page 137. To specify more than one report create a REPORT
control statement for each desired report.

Example:
REPORT REPORT=TWU
REPORT REPORT=MWU

ASMXREF Token Statement
A token is an arbitrary string of characters specified for inclusion or exclusion in the ASMXREF scan. The
TWU, SOR, and TSP reports show occurrences of all include tokens, unless ASMXREF matches a
retrieved token with an exclude token.ASMXREF does not use tokens in other reports.

If the language is case-insensitive, ASMXREF converts source records to uppercase internally. This
simplifies the matching process.

The XRFLANG file supplied with ASMXREF lists the default tokens included in a scan. When you create
the TWU or SOR reports ASMXREF processes the default tokens unless you enter a TOKEN NODEFLT
statement in the XRFTOKN file. For details on the TOKEN NODEFLT statement see “Token.” The default
tokens have been designed primarily for the assembler language and represent most fields of interest, in
that language. You can modify the default token list to include tokens more suited to your site. For
details of the default tokens supplied with ASMXREF, and modifying those tokens, see “ASMXREF
XRFLANG Statements” on page 134.

The default tokens may be sufficient for all your ASMXREF scans, but you may need to supplement, or
replace, the default tokens in the XRFLANG file with your own tokens for a scan with special
requirements. When you need to do this it is not advisable to modify the default token list, but instead
create your own XRFTOKN file.

You must enclose all tokens in the XRFTOKN file within matching delimiter characters. The delimiter
character can be any non-space character but the start and end delimiter must be the same. You can use a
different pair of delimiter characters for each token. For example, if you have a double quote (") character
embedded in the token, such as MM"DD, then you can use the ? character as the delimiter and then use the
" for the next token. For example:
?MM"DD?
"YY/MM"

For details of the scanning rulesASMXREF applies see “Scanning rules for ASMXREF” on page 133.

Token
You can abbreviate TOKEN to T.

The following parameters are valid with the TOKEN statement:

INCLUDE
You can abbreviate INCLUDE to INC.

Specifies a token to include in the scan for the TWU, SOR, and TSP reports.

To specify a token explicitly enter the exact search token between matching delimiter characters.
For example:
TOKEN INC="DATE/TIME"

Chapter 5. Using the Cross-Reference Facility 131

ASMXREF scans all the source files specified with the ASMXREF control statements, searching
each for an exact match with the specified explicit tokens.

You can also specify the INCLUDE token generically with a mask character inserted in the search
token.ASMXREF treats the mask character as a wildcard and retrieves all, or any, characters in
the position of the mask character. The default mask character is the asterisk (*) that represents
any number of characters (including none). For example:
TOKEN INC="DATE/*I*"

retrieves:
DATE/TIME
DATE/LINE

ASMXREF allows spaces within the token string but does not accept them between the
parameters and the start of the token string. The following example is acceptable:
TOKEN INC=’ab c’

The following example is not acceptable:
TOKEN INC= ’ABC’

EXCLUDE
You can abbreviate EXCLUDE to EXC.

Specifies a token to exclude from the scan for the TWU, SOR, and TSP reports.

When a TOKEN INCLUDE statement contains a generic mask (wildcard) character, the TOKEN
EXCLUDE statement specifies the exclusion of the token when it is found by the INCLUDE
statement token. You cannot enter a generic mask character in a TOKEN EXCLUDE statement.

Note: The TOKEN EXCLUDE statement only applies to the previous TOKEN INCLUDE
statement that must contain a generic mask. If you need to repeat the TOKEN EXCLUDE
statement, for another TOKEN INCLUDE statement, then you must repeat the token exclude
statement.

Example:
TOKEN INC="DDMM*"
TOKEN EXC="DDMMCCYY"

retrieves:
DDMMYY
DDMMM

ASMXREF does not report the following string because it matches the exclude token:
DDMMCCYY

MASK
Specifies a wildcard character.

The asterisk (*) character is the default generic mask (wildcard) symbol.

If you enter a search token that contains the mask character itself you must specify an override to
the mask character, with the MASK parameter. This is applicable only to the previous TOKEN
INCLUDE statement.

If multiple MASK parameters are entered together, ASMXREF uses only the last one for the
previous INCLUDE token. The following example shows the MASK parameter:
TOKEN INC="DA%E/*IM%"
TOKEN MASK="%"

retrieves:
DATE/*IMAGE
DANE/*IMAGINARY

132 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

In the previous example ASMXREF takes the % character as the mask symbol for the previous
TOKEN INC statement.

If you enter this statement:
TOKEN INC="***"

ASMXREF treats the statement as an explicit token and retrieve all occurrences of ***.

Note: The TOKEN MASK statement only overrides the default for the previous token statement.
On finding another token statementASMXREF reapplies the default value of a * representing the
mask character.

NODEFLT
Turns off processing of the default tokens supplied in the XRFLANG file. This statement does not
affect the processing of the language-specific exclusion verbs.

Note: To create the TWU and SOR reports ASMXREF must have tokens specified. If you turn off
processing of the default tokens, with the TOKEN NODEFLT statement, you must supply tokens
in the XRFTOKN file. If you do not specify a XRFTOKN file ensure default tokens exist in the
XRFLANG file.

Example:
TOKEN NODEFLT

NOSEP
Suppresses the separator records in the Tagged Source Program (TSP).

Example:
TOKEN NOSEP

ASMXREF creates separators by default and saves them in the Tagged Source Program (TSP) that
it creates in the scan phase. Producing separators allows this file to be split into individual
members that you can use to replace or create macro or copy libraries. For details on splitting the
TSP see “Tagged Source Program (TSP)” on page 154.

Scanning rules for ASMXREF
The token control statements define the tokens included in or excluded from the scan. This section
explains the rules applied by ASMXREF with the token statement.

Generic matching rules
You can specify a token with the mask character in the first-character or last-character position.
ASMXREF then searches for a match on any number of characters before or after the token specified. If
ASMXREF finds a match, in the source record for the token, it scans forwards and backwards from the
match to the scan end character. The scan end character is a space, ' '.ASMXREF passes the space
delimited match to the matching process of the EXCLUDE tokens. If ASMXREF matches the retrieved
token with an exclude token it excludes the match from the report.

Here is an example to help you understand this rule:

Source Record
MVC DATE(8),SYSDATETIME

ASMXREF control statements
TOKEN INC="*DATE*"
TOKEN EXC="DATETIME"

After finding the first match ASMXREF restarts the scan from the character following the token. In the
previous example theASMXREF scanning process finds the first occurrence of DATE. As the token is

Chapter 5. Using the Cross-Reference Facility 133

specified generically with an * in the first and last character ASMXREF scans forwards and backwards
from the match, until it encounters the space scan end characters.ASMXREF retrieves the string
DATE(8),SYSDATETIME. ASMXREF then continues the scan from the character following the first DATE
match, which in the example is the '(', until it finds the second match. Again ASMXREF scans forwards
and backwards from this match, until it encounters the space characters. The second match again
retrieves the string DATE(8),SYSDATETIME.ASMXREF compares the retrieved string with the exclude
statement, which in this example does not apply to either match.

If you had specified the following exclude statement:
TOKEN EXC="DATE(8),SYSDATETIME"

ASMXREF excludes the two matches from the TWU, SOR, or the TSP reports.

Another example:

Source Record
GETMAIN R,LV=(0),LOC=BELOW

ASMXREF control statements
TOKEN INC="*LV=(0)*"
TOKEN EXC="R,LV=(0),LOC=BELOW"

When ASMXREF finds the match it scans forwards and backwards until it encounters the space end
characters. In the previous example the match is "R,LV=(0),LOC=BELOW". The exclude token
"R,LV=(0),LOC=BELOW" matches the retrieved token and so ASMXREF excludes the match.

ASMXREF Options
on z/OS and z/VSE, you specify ASMXREF options with the PARM parameter. On CMS, you specify
ASMXREF options in a file with the same file name as the control file, and a file type of DEFAULTS.

You must specify at least one option:

DUP (CMS Only) Process modules with duplicate names.

NODUP
Do not process source files with duplicate names. This is the default.

MSGLEVEL
The lowest level of messages ASMXREF is printed. Range is 0 to 16. The default is 0.

PAGELEN
Specifies the page length for the SYSPRINT file. The default is 55.

ASMXREF XRFLANG Statements
ASMXREF is supplied with a sample language (XRFLANG) file. This file contains two segments:
1. The default token segment contains the tokens included by default in the ASMXREF scan phase for

the TWU and SOR reports.
2. The language segment contains the languages supported by ASMXREF, and the language-specific

exclude verbs (words).ASMXREF treats these verbs in a similar way to exclude tokens, but excludes
them when scanning a file in the specified language.

134 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Default token segment
The default token segment contains a header in the format:
DEFAULT TOKENS

A list of the default tokens follows the header record. The list contains one token on each line, each
starting in column one. The sample XRFLANG file supplied with ASMXREF contains a set of default
tokens. These tokens are designed for the assembler language but you can modify them to suit your
environment. You can enter either explicit tokens (exactly as you need the token) or generic tokens where
you use the asterisk (*) character as a wildcard.ASMXREF does not treat a mask character, in the
XRFLANG file, as a space character, as it does when you use a mask character in the XRFTOKN file.

DEFAULT TOKENS
DATE
TIME
MM/DD/YY
MM/YY
DD/MM/YY
YY/MM/DD
YYDDD
MONTH
DAY
YEAR
YR
*DATE
DAT*
*YR’
C’’20
P’’20
LANG=FORTRAN
ARRAY
BACKSPACE...
LANG=ASM
DC
EQU...
LANG=COBOL
ACCEPT
ACCESS...
LANG=C
&&
ANSI...
LANG=CPP
&&
_cplusplus
LANG=PLI
%ACTIVATION
%DECLARE...
LANG=RPG
*IN0A
*IN0B...

Figure 39. Sample XRFLANG file

Chapter 5. Using the Cross-Reference Facility 135

When adding default tokens you do not need to enter the TOKEN INCLUDE statement and you do not
need to enclose the token in delimiters.

ASMXREF treats all tokens in the default token list as include tokens and does not accept exclude tokens
in the XRFLANG file.

If you need a token list for your own run, it is better to create your own XRFTOKN token statement file
containing your personalized tokens, rather than modifying the default list. For details on how to create
anXRFTOKN file see “ASMXREF Token Statement” on page 131.

If you need to turn off processing of the default tokens create your own XRFTOKN file and enter a
TOKEN NODEFLT statement in the file. Remember the TWU and SOR reports require tokens, therefore,
you must have tokens in either the XRFTOKN file or the XRFLANG file.

For a list of the default tokens see Figure 39 on page 135.

Note: These tokens are designed for the assembler language. If you are using another language, modify
them to suit your environment.

Language segment
The language segment contains a header in the format:
LANG=nnnnnnnn

where nnnnnnnn is the keyword representing a language supported by ASMXREF.ASMXREF supports all
the languages listed in this file; you cannot add other languages to this file.

When you run the ASMXREF scan phase you must specify the language of the files in the library
ASMXREF is scanning. Do this with the LIBRARY LANGUAGE=language_name control statement. The
language_name is the keyword of the language, as specified in the XRFLANG file. For details on the
LIBRARY control statement see “ASMXREF Control Statements” on page 128.

A list of exclude verbs (words), applicable to the language, follow the language header. The ASMXREF
scan excludes these verbs when it creates the TWU or SOR reports, when the source files are in the
language specified in the header record. The sample XRFLANG file supplied with ASMXREF contains a
sample set of language-specific exclude verbs. After ASMXREF is installed, update this file and modify
the exclude verbs to suit each language used in your environment. Specify the exclude verbs one per line
starting in column one.

ASMXREP Options
This section describes the options available with ASMXREP. on z/OS you specify ASMXREP options with
the RPARM parameter; on z/VSE you specify ASMXREP options with the PARM parameter; on CMS you
specify ASMXREP options in a file with the same file name as the control file and a file type of
DEFAULTS.

Format
nnn (Default 60). Printer format, where nnn is the number of lines per page. Not available with
the SOR report. Enter any number between 20 and 999. You do not need to enter a leading zero.
You can not use this option with the SOR report.

Sort Order
The order in which ASMXREF sorts the report. You cannot use this option with the SOR report.
MAC Generates the CF report in macro order.
PART Generates the CF report in module order.
MOD Generates the LOC report in module order.
COM Generates the LOC report in component order.

136 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

MAC Generates the MWU report in macro order.
MOD Generates the SWU report in module order.
PART Generates the MWU report in module order.
SYM Generates the SWU report in symbol order.
SYMC Generates the SWU report in compact symbol order.

You can not use this option with the SOR or TWU reports.

SEP_CHAR
You can only use this option with the SOR report. The separator character for building the
spreadsheet cells. The separator can be only a comma or semicolon. Default is , (comma).

T_DELIM
You can only use this option with the SOR report. The title delimiter for each token cell. The title
delimiter can be any single character recognized by the spreadsheet application. Default is
’(apostrophe).

Understanding the reports
This section describes the reports available in ASMXREF and provides the following information:
v The languages supported by each report
v A description of each report
v A sample of each report

Languages supported by reports
Table 19. Languages supported by ASMXREF reports

Language CF LOC LOOC MWU SOR SWU TWU

ASM370 U U U U U U

ASM86 U U U U

C U U U U U U

C++ U U U U U U U

CLIST U

COBOL U U U

FORTRAN U U U

Generic U

ISPF U

JCL U

MASM U

MODULA 2/3 U

OS/2 cmd U

OS/2 DEF U

OS/2 IPF U

OS/2 MAK U

OS/2 RC U

OS/2 UID U

PASCAL U

PL/I U U U U U U

Chapter 5. Using the Cross-Reference Facility 137

Table 19. Languages supported by ASMXREF reports (continued)

Language CF LOC LOOC MWU SOR SWU TWU

QMF/SQL U

REXX U U U U U U

RPG U U U

SCRIPT U

Control flow (CF) report
The Control Flow report tabulates all intermodule program references as a function of member or entry
point name. It can list references either in the order of the members referring to the subject entry point or
the entry point names referred by the subject member, depending on the sort order.

For each part processed, the CF report can handle up to 256 internal procedure names and 1024 entry
point names.

Reference names that exceed 64 characters are truncated.

ASMXREF classifies each references by type. The classification is language specific and is described in the
following sections.

C family references
ASMXREF scans the following C statements to extract Control Flow information:
v Function declarations
v Function definitions
v Macro definitions
v Expressions in the each statement.

Note: A sample C program is shown in Figure 40 on page 139, with accompanying CF report in Figure 41
on page 140.

Functional references for C code are classified as follows:
v Defined macros are identified and flagged as #define type references.
v Declared functions are recognized as declarative.
v Extern functions that are called in different expressions are identified as CALL type of references.
v Static functions and #defined macros that are called from different expressions are recognized as Local

Calls.
v Functions defined as extern functions within the module are identified as such.
v Functions defined as static functions within the module are flagged as static definitions.

Notes:

1. For #define and function definitions, the references are assumed to be made from the module.
2. For Call and Local Call type of references the references are assumed to be made from calling

functions.
3. A statement of the following format is always treated as a function call unless symbol1 is a generic

data type (char, int, etc.) in C.
symbol1 (*symbol2) ;

PL family references
ASMXREF determines references and their types by analyzing the following PL instructions:
v CALL
v ?LINK

138 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

v ?LOAD
v ?XCTL
v ?ATTACH
v DCL .. NONLOCAL EXTERNAL (EXTERN)
v DCL .. LOCAL EXTERNAL (EXTERN)
v EXIT TO (VCON)

External declarations are extracted as EXTERN type references if they are qualified by LOCAL or
NONLOCAL attributes. The labels in the EXIT TO instructions are identified as VCON references. All
other reference types are classified per the instruction names.

REXX references
For REXX programs, ASMXREF analyzes the following REXX instructions to extract Control Flow
references:
v Call
v Signal
v Function Invocation

All reference types are CALL, and functions are assumed to be external unless the function name is
found in a Procedure statement, in which case it is flagged as LOCAL.

/* Physical file name : moda.c */
#define max(a,b) (a>b ? a : b)

int FunctionA(int a)
{

a = ProcessA(a) ;
if (ProcessB())

return(0) ;
while(ProcessC())

printf("please wait \n") ;
a = max(a,0);

}

static int ProcessA(int a)
{

return(a) ;
}

extern int ProcessB()
{

return(0) ;
}

int ProcessC()
{

return(0) ;
}
/* end of module MODA */

Figure 40. Sample C program used for CF report

Chapter 5. Using the Cross-Reference Facility 139

Lines Of Code (LOC) report
The Lines Of Code report provides a count, arranged by part and by component, of:
v Number of source lines in the part.
v Number of comments in the part.
v Shipped source instructions (SSI), which are the number of instructions within each part scanned, both

executable and non-executable, that are not spaces or comments.
v Changed source instructions (CSI), which are the number of unique SSI that have been modified in

each part categorized by added, changed, deleted, moved, etc.

In addition, the LOC Report provides a summary report of CSI arranged by programmer.

Note: CSI counts are provided only for changes that are marked using the standard flags as described in
“Changed Source Instruction (CSI) measurements” on page 141.

A sample LOC report is shown in Figure 42 on page 141. In this sample, the Release and
Origin/Programmer flags were allowed to default to ALL.

Date: 07/11/2008 ASMXREF V1.6.0 Control Flow Report Page 1
Time: 11:50:36 Sorted by Referenced Function/Module (MAC)

Includes ALL Symbols (EXT and INT)

Referenced Function/Module
Ref Keys Calling Functions/Modules #

max
C FunctionA 1
V MODA C 1

printf
C FunctionA 1

FunctionA
E MODA C 1

ProcessA
C L FunctionA 1
D L MODA C 1

ProcessB
C FunctionA 1

E MODA C 1

ProcessC
C FunctionA 1

E MODA C 1

C-Lang: I=Invalid C=Call D=Static Def K=Dcl L=Static V=#def E=Extrn Def
Others: A=Attach C=Call D=Load K=Link L=Local V=VCON E=Extrn X=XCTL

Figure 41. Sample CF report

140 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Changed Source Instruction (CSI) measurements
This section describes the coding standards required to obtain CSI measurements.

Comments, unit descriptors, change-flag descriptors, and change flags: This section describes the
volume measurement rules for:
v Comments
v Unit Descriptors
v Change-Flag Descriptors
v Change Flags.

These rules apply to all languages.

Comment definition: Comments are categorized as block or remark.
1. Full-line comments

A line that contains only commentary is a full-line comment. A full-line comment that is not
embedded within an instruction is counted as a comment. A block comment may span several lines.
For nested comments, the entire text of the comment is regarded as block or remark based on whether
the outermost comment starts as the first item on a line or not. The comment delimiters for inner
comments are disregarded.

2. Remarks
A remark is any comment which is not a block comment. This is valid regardless of whether the
comment appears within an instruction or at instruction boundary. A remark may also span several
lines.

ASMXREF does not count remarks.

Note: Blank lines are counted as comments.

Date: 07/11/2008 ASMXREF V1.6.0 Lines of Code Report Page 1
Time: 11:55:06 by Module

Product = SAMPLE
Release = ALL
Programmer = ALL

(ADD+CHG)
Module Language Records Comments SSI CSI ADDED CHANGED DELETED MOVED COPIED

1 XREFTST1 PLX PLX 54 26 24 23 21 2 5 1
2 XREFTST2 ASSEMBLE ASM 58 17 41 40 35 5 5 1
3 XREFTST3 CXX CPP 84 43 40 40 34 6 14

PRODUCT TOTALS: 196 86 105 103 90 13 24 2

REPORT TOTALS: 196 86 105 103 90 13 24 2

Date: 07/11/2008 ASMXREF V1.6.0 Lines of Code Report Page 2
Time: 11:55:06 Programmer Summary Report

Release = ALL
Programmer = ALL

(ADD+CHG)
Programmer CSI ADDED CHANGED DELETED MOVED COPIED

ANYCODER 3 1 2 1
DEPT01 33 33
DEPT28 3 1 2 1
GER 1 1 19
RAS 4 1 3 5
ROBINS 59 54 5

PROGRAMMER TOTALS: 103 90 13 24 2

Figure 42. Sample LOC report

Chapter 5. Using the Cross-Reference Facility 141

Unit descriptor: A unit descriptor gives the name of the module, and the names of the component and
product containing the module. Unit descriptors are not required in your code, but are recommended to
provide Component and Product classifications for the LOC report.

A unit descriptor has one of the following formats depending on whether the source is a module,
segment, or macro:

$MOD(unitname) COMP(component) PROD(product) : comment
$SEG(unitname) COMP(component) PROD(product) : comment
$MAC(unitname) COMP(component) PROD(product) : comment

If present, the unit descriptor must be the first item on any line of a block comment. Furthermore, there
should not be more than one unit descriptor in a source file. If more than one is found, only the first one
is used. A unit descriptor cannot be split over several lines.

Unit, component, and product names are enclosed in parentheses and can consist of any character other
than the closing parenthesis. The maximum size of each of these names is eight characters.

The keywords may be separated by either a space or a comma.

The following example describes a unit descriptor for the unit ADDPROC, which is a module. It belongs
to the component SC123, which is part of the product XYZ:

Change-flag descriptor: Change-flag descriptors are used to group all changes made for a particular reason
qualified by the release number, date, and origin associated with those changes.

Change-flag descriptors are also used to define implicit change flags which indicate the number of SSIs
that have not been changed.

The format of a standard change-flag descriptor is:
$pn= reason release# date origin : comments

where p is the process class and n is the index of the flag. The process class can be used to determine a
specific type of change activity.

The following table lists recommended conventions for process class codes:

Note: Process class codes are not limited to these, and each location or development team may choose to
create their own scheme for categorizing changes. Many groups just start with any alphanumeric flag (for
example A1, AA, 11) and increment as needed, except for an index of zero, which is reserved for implicit
flags.

Table 20. Process class code conventions

Class code Class name

D,E,F,G DCR Design Change

H,I,J,K HDWE Hardware Support Change

L,M,N,O LINE Line Item

P,Q,R,S PTM Internal Problem Reports

0-9 APAR User Problem Reports

$MOD(ADDPROC) COMP(SC123) PROD(XYZ): Add Procs to Test File

Figure 43. Sample unit descriptor

142 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

The reason, release#, date, and origin fields may be separated by spaces or commas.

The change-flag descriptor must be the first non-space item on any line of a block comment. A block
comment can contain more than one change-flag descriptor, each appearing on a different line.

The following table describes each field of a change-flag descriptor:

Table 21. Definition of the change-flag-descriptor fields

Field Length Usage

$ 1 A delimiter dollar character.

pn= 3 For the flag ID, where p is the process class and n is the index for the specified
process class.

reason 1 to 12 The reason for the change, for example, the number of a line item, APAR number,
or PTM/PTR number.

release# 1 to 8 A release number, for example, 041 for Release 4.1.

date 0 to 8 A date in any desired format. For example, 930901 in Gregorian format, or
09/01/93 in US format.

origin 0 to 8 Information about the origin of the set of changes, for example, the initials, name,
or user ID of the requester.

: 1 A delimiter colon character.

comment 0 to 80 Any explanatory text.

The reason, release, date, and origin fields can consist of any sequence of characters except a space,
comma, or colon. If the length of a field exceeds the permissible range, the field is truncated. However, if
the length of a field is less than the maximum, it is padded with spaces on the right.

Date and origin are optional fields, but if a particular field is specified, all the fields to its left must also
be present.

Note: ASMXREF searches for flag descriptors throughout the module. If the ending delimiter “:” is
missing, ASMXREF recognizes the descriptor but issues an error message.

Flag descriptor for implicit flagging: If a standard change-flag descriptor defines a process code with an
index value of zero, the descriptor defines an implicit change flag.

Implicit flagging refers to the automatic application of a change flag to all the SSIs that are not changed
(that is, to all unflagged instructions). For example, if the flag descriptor defines the process code as h0 as
in the following example, then ASMXREF assumes that all unflagged instructions in that module are
flagged with the implicit flag H0.

A unit should contain only one change-flag descriptor that defines an implicit change flag. If a unit
contains more than one implicit definition, only the first one is accepted and the rest are ignored.

The following figure gives some examples of valid change-flag descriptors:

Chapter 5. Using the Cross-Reference Facility 143

Change flags: Change flags are used to mark all changes in a source file made during development and
maintenance.

Standard change flags have the following format:
m@pnc

where
m is an optional multiplication factor
@ is the @ sign itself
p is the process class
n is an index
c is the change code

The process class, index, and change code may be alphanumeric.

The multiplication factor must be numeric and can be used only for delete flags.

Note: An exception to this rule is change flagging for languages that do not permit remarks, like ISPF
and COBOL. Consequently, summary flags may be used to describe the number of instructions changed.
For these programs, a multiplication factor may be specified for any change code. The multiplication
factor, however describes the number of instructions changed and not the number of source lines
changed.

The change code can be any of the following:

A Add

C Change

P Copy

M Move

D Delete

Change flags for deleted instructions are normally coded within a block comment. The multiplication
factor specifies the number of instructions that have been deleted. For example, “19@H1D” implies that
nineteen instructions were deleted for the change defined by the flag descriptor H1.

Note: The delete count does not contribute to CSI.

No embedded spaces are allowed within any change flag.

Change flags are identified as a sequence of characters starting with @ and followed by three characters.

As mentioned above, an optional multiplication factor may be specified with a delete change flag only. If
the multiplication factor is found on a non-delete flag in a language that supports remarks, it is ignored.

FLAG REASON RLSE DATE ORIGIN COMMENTS
---- -------- ---- -------- ------- --------------------
$H0= DA24 ,033 ,760718, RM44 : CREATED
$02= ZA34537 811, 770416 DDR : CORRECT BALANCE
$P2= PTR0336 983 871211 : FIX BLOCK ESCAPE
$h1= SKI1223A 103 09/01/93 Sharon : Increase Date Field

Figure 44. Sample change-flag descriptors

144 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

A change flag can be coded in a block comment or in a remark. Several change flags can be coded in a
comment. The change flags must be the last non-space sequence of characters within a comment
regardless of whether the comment spans several lines or not.

Rules for counting change flags:

1. Only one change flag in a comment qualifies for the CSI count. For a comment containing several
change flags, only the last (rightmost) change flag is counted.

2. A change flag of non-delete type is associated with the number of preceding language instructions
ending on the line on which the comment started. If the number of instructions ending on that line is
zero, the CSI count is zero. If more than one instruction ends on the same line, the flag is associated
with all these instructions.

Note: The LOC report does not recognize non-standard change flags.
3. For a standard change flag of delete type (change code D), a multiplication factor of one is assumed if

not specified.

The following figure shows a sample XREF source header:

The LOOC report
The Lines of OO Code (LOOC) report gives the following information about C++ classes and objects:
v Lines of Code (LOC) per Class
v Lines of Code (LOC) per Object

/*--*/
/* */
/* XREF Information : */
/* */
/* $MOD(XREF) COMP(XREF) PROD(XREF): Main Logic for Scan Phase */
/* */
/* Flag Reason Rlse Date Origin Flag Description */
/* ---- -------- ---- ------ ------ ------------------------------ */
/* $L0= F00000 070 770101 PAS : Base Code */
/* $D1= F00093 093 851131 RLS : Release 9.3 */
/* $D2= LX0011 099 910304 Robins: Release 9.9 */
/* $H1= LX0222 103 930630 Chip : Support OS/2 Platform Version */
/* -- */
/* */
/* Flag Format is @XNT Where: */
/* */
/* Suggested Indicators for X, but not required: */
/* */
/* X = D,E,F,G for DCR - Design Change */
/* H,I,J,K for HDWE - Hardware Support Change */
/* L,M,N,O for LINE - Line Item */
/* P,Q,R,S for PTM - Internal Problem Reports */
/* 0-9 for APAR - User Problem Reports */
/* */
/* N = any number or letter (ONLY use a ’0’ once per file, used */
/* on all unflagged lines by XREF) */
/* T = A - for Added code. */
/* C - for Changed code. */
/* D - for Deleted code (###@XNT) ### = number of lines deleted */
/* M - for Moved code. */
/* P - for Copied code. */
/* */
/*--*/

Figure 45. Sample XREF header

Chapter 5. Using the Cross-Reference Facility 145

v Objects per Class

All three sections are contained in the LOOC report file. The information used to build these three
sections of the LOOC report is gathered from the LOOC and SWUO intermediate files.

Note: If the SWUO intermediate file is empty or missing, only the LOC per Class section is generated,
and a message appears in the report to this effect. To obtain complete LOOC detail, you must request the
SWU report during the Scan Phase, in addition to the LOOC report.

The LOC per Class section
The LOC per Class section contains the following information, arranged by class name:
v Number of comment records in the class declaration
v Number of SSI executable statements in the class declaration
v Number of SSI non-executable statements in the class declaration
v Module name in which the class declaration resides

The counts for each class include LOC for the class declaration itself and LOC for all member functions,
whether or not the member function is declared within the class declaration.

Note: When a member function of a class is declared in a different module from the one in which the
class is declared, the counts for the class and the member function remain separated.

A sample LOC per Class section is shown in Figure 46.

The LOC per Object section
The LOC per Object section contains the following information, arranged by object name:
v Number of comment records
v Number of executable SSI
v Number of non-executable SSI
v Module name in which the object is declared, defined, or referenced.

The counts for each object are obtained by multiplying the number of times the object is referenced by
the number of comments, SSI-executable, and SSI-nonexecutable records in the declaration of the class of
which the object is an instance.

A sample LOC per Object section is shown in Figure 47 on page 147.

Date: 07/11/2008 ASMXREF V1.6.0 LOC Per Class Report Page 1
Time: 12:00:35

Class
Comments SSI_X SSI_N Module

aBase
0 4 0 CADDADD CPP
0 4 0 CADDADD2 CPP

aClass
0 14 0 CADDADD CPP
0 14 0 CADDADD2 CPP

Figure 46. Sample LOC per Class section

146 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

The Objects per Class section
The Objects per Class section lists, for each class name, all the objects which are instances of that class,
and the modules in which the objects are referenced.

A sample LOC per Class section is shown in Figure 48.

Macro Where Used (MWU) report
The Macro Where Used (MWU) report lists all macros invoked and all segments copied and included.

On CMS ASMXREF creates the MWU in a file named filename OUTMWU A, where filename is the name
of the control file.

on z/OS, the default name for the MWU, defined in the procedure supplied with ASMXREF, is
userid.XREFOUT.MWU.

On z/VSE the MWU is printed from SYSPRT.

The report includes the type and frequency of the invocation/reference.

Date: 07/11/2008 ASMXREF V1.6.0 LOC Per Object Report Page 2
Time: 12:00:35

Object
Comments SSI_X SSI_N Module

Mine
0 4 0 CADDADD CPP
0 4 0 CADDADD2 CPP

Mine2
0 4 0 CADDADD2 CPP

Yours
0 14 0 CADDADD CPP
0 14 0 CADDADD2 CPP

Yours2
0 14 0 CADDADD2 CPP

Figure 47. Sample LOC per Object section

Date: 07/11/2008 ASMXREF V1.6.0 Object/Class Report Page 3
Time: 12:00:35

Class
Object Module

aBase
Mine CADDADD CPP
Mine CADDADD2 CPP

aClass
Yours CADDADD CPP
Yours CADDADD2 CPP

Figure 48. Sample Objects per Class section

Chapter 5. Using the Cross-Reference Facility 147

Spreadsheet Oriented Report (SOR)
The Spreadsheet Oriented (SOR) report is a comma-delimited file that you can import into a spreadsheet
application, such as Lotus 1-2-3, to estimate effort and impact assessment.

On CMS ASMXREF creates the SOR in a file named filename OUTSOR A, where filename is the name of
the control file.

on z/OS, the default name for the SOR, defined in the procedure supplied with ASMXREF, is
userid.XREFOUT.SOR.

On z/VSE the SOR is printed from SYSPRT.

The Spreadsheet Oriented report shows occurrences of specified tokens in the search library. Default
tokens are specified in the XRFLANG file; tokens you have specified are contained in your XRFTOKN
token file. For details on the default tokens see “ASMXREF XRFLANG Statements” on page 134. For
details of the TOKEN control statements see “ASMXREF Token Statement” on page 131. The first record
for each token set in the report is the “heading” record with the following quoted strings:

Member Name
Lines Of Code
Total Matches
token_1...
token_n...

The remaining records are detail records containing the module name, the number of lines of code, the
total matches for the module, and the number of matches for each token.

The report segments each header and detail record in 80 byte segments, with the last segment having an
EBCDIC CR (carriage return) and a LF (line feed) character. The report pads each record with spaces to
fill the 80 characters. The report specifies the carriage return and line feed characters with a ←.

Date: 07/11/2008 ASMXREF V1.6.0 Macro Where Used Report Page 1
Time: 12:07:02 Macro to Part Mapping - All Macros

Macro
Module # Type

FREEMAIN
ASMTEST ASSEMBLE 1 ASM MACRO

TOTAL 1

GETMAIN
ASMTEST ASSEMBLE 1 ASM MACRO

TOTAL 1

TIME
ASMTEST ASSEMBLE 2 ASM MACRO

TOTAL 2

WTO
ASMTEST ASSEMBLE 1 ASM MACRO

TOTAL 1

Figure 49. Sample Macro Where Used (MWU) report

148 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Set title delimiters and cell separator characters with the report parameters. For details on the report
parameters see “ASMXREP Options” on page 136.

When you run the ASMXREF scan phase, for the SOR report, ASMXREF generates the TSP (Tagged
Source Program). The ASMXREF report phase uses the Tagged Source Program to create the SOR report.

Note: When you create the Spreadsheet Oriented report on z/VSE, it generates two records at the end of
the file:
/+
/*

Before importing the file into a spreadsheet, delete these records.

File transfer to PC
To transfer the Spreadsheet Oriented report to a PC use the following settings in your file transfer
program:

File option
ASCII Text

File option
One to one character mapping

Record format
Fixed

Logical record format
80

Note: Do not specify Carriage Return, Line Feed.ASMXREF specifies these in the Spreadsheet Oriented
data file.

Symbol Where Used (SWU) report
The Symbol Where Used (SWU) report lists all symbols referenced within the source and type of
reference.

’Module ID’,’LOC’,’Total Matches’,’*DATE’,’*YR’,’=C’20’,’=P’20’,’CSECT’,’DAT*’,
’DATE’,’DAY’,’DD/MM/YY’,’MM/DD/YY’,’MM/YY’,’MONTH’,’TIME’,’YEAR’,’YR’,’YY/MM/DD’
’,’YYDDD’

ASMTEST,0069,0007,0002,0000,0000,0000,0001,0004,0000,0000,0000,0000,0000,0000,00
00,0000,0000,0000,0000

Figure 50. Sample Spreadsheet Oriented Report for z/OS and CMS

’Module ID’,’LOC’,’Total Matches’,’*DATE’,’*YR’,’=C’20’,’=P’20’,’CSECT’,’DAT*’,’
’DATE’,’DAY’,’DD/MM/YY’,’MM/DD/YY’,’MM/YY’,’MONTH’,’TIME’,’YEAR’,’YR’,’YY/MM/DD
’,’YYDDD’

ASMTEST,0069,0007,0002,0000,0000,0000,0001,0004,0000,0000,0000,0000,0000,0000,00
00,0000,0000,0000,0000

/+
/*

Figure 51. Sample Spreadsheet Oriented report for z/VSE

Chapter 5. Using the Cross-Reference Facility 149

On CMS ASMXREF creates the SWU in a file named filename OUTSWU A, where filename is the name of
the control file.

on z/OS, the default name for the SWU, defined in the procedure supplied with ASMXREF, is
userid.XREFOUT.SWU.

On z/VSE the SWU is printed from SYSPRT.

The symbols can be variables or macros identified with the following flags:

Comparison
ASMXREF recognizes the symbol is a comparison.

Definition
ASMXREF recognizes that the symbol is declared in that particular module.

External Ref
ASMXREF recognizes the symbol is an external reference.

Label ASMXREF recognizes the symbol as a label.

Macro ASMXREF recognizes the symbol as a macro call.

Parameter
ASMXREF recognizes the symbol is a parameter.

Read ASMXREF recognizes that the symbol is used in expressions but does not name locations.

Write ASMXREF recognizes that the symbol name is used as the target of an operation.

Number.

150 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Date: 07/11/2008 ASMXREF V1.6.0 Symbol Where Used Report Page 1
Time: 12:09:28 Symbol to Module Map - All Symbols (SYM)

Symbol
Module Access #

&SYS
ASMTEST ASSEMBLE ... D 1

A
ASMTEST ASSEMBLE ... P 1

ANY
ASMTEST ASSEMBLE ... R 1

ASMHSAVE
ASMTEST ASSEMBLE ... R D 2

ASMTEST
ASMTEST ASSEMBLE ... LR 6

BEGIN
ASMTEST ASSEMBLE ... L 2

BIN
ASMTEST ASSEMBLE ... P 1

CHAIN
ASMTEST ASSEMBLE ... L 1

DATWORK
ASMTEST ASSEMBLE ... R D 2

DBLWORK
ASMTEST ASSEMBLE ... RW D 4

DD
ASMTEST ASSEMBLE ... L W 2

E
ASMTEST ASSEMBLE ... P 1

EXIT
ASMTEST ASSEMBLE ... L 1

FREEMAIN
ASMTEST ASSEMBLE ... R M 1

GETMAIN
ASMTEST ASSEMBLE ... R M 1

L
ASMTEST ASSEMBLE ... P 1

C = Comparison D = Definition E = External Ref K = Class L = Label
M = Macro/Func/Inc O = Object P = Parameter R = Read W = Write

Figure 52. Sample Symbol Where Used (SWU) report (part 1 of 2)

Chapter 5. Using the Cross-Reference Facility 151

Date: 07/11/2008 ASMXREF V1.6.0 Symbol Where Used Report Page 2
Time: 12:09:28 Symbol to Module Map - All Symbols (SYM)

Symbol
Module Access #

LENWORK
ASMTEST ASSEMBLE ... LR 3

LINKAGE
ASMTEST ASSEMBLE ... P 2

LV
ASMTEST ASSEMBLE ... P 2

MF
ASMTEST ASSEMBLE ... P 2

MM
ASMTEST ASSEMBLE ... W D 2

PARMS
ASMTEST ASSEMBLE ... LR 2

R
ASMTEST ASSEMBLE ... P 2

RETURN
ASMTEST ASSEMBLE ... L 1

R0
ASMTEST ASSEMBLE ... W D 3

R1
ASMTEST ASSEMBLE ... RW D 4

R10
ASMTEST ASSEMBLE ... D 1

R11
ASMTEST ASSEMBLE ... RW D 3

R12
ASMTEST ASSEMBLE ... RW D 5

R13
ASMTEST ASSEMBLE ... RW D 11

R14
ASMTEST ASSEMBLE ... LRW D 4

R15
ASMTEST ASSEMBLE ... RW D 5

C = Comparison D = Definition E = External Ref K = Class L = Label
M = Macro/Func/Inc O = Object P = Parameter R = Read W = Write

Figure 53. Sample Symbol Where Used (SWU) report (part 2 of 2)

152 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Token Where Used (TWU) report
The Token Where Used (TWU) report shows occurrences of tokens in the search library.

On CMS ASMXREF creates the TWU in a file named filename OUTTWU A, where filename is the name of
the control file.

on z/OS, the default name for the TWU, defined in the procedure supplied with ASMXREF, is
userid.XREFOUT.TWU.

On z/VSE the TWU is printed from SYSPRT.

You can specify tokens in the XRFTOKN file, use the default tokens specified in the XRFLANG file, or
use both. For details on the TOKEN control statements see “ASMXREF XRFLANG Statements” on page
134 and “ASMXREF Token Statement” on page 131.

When you run the ASMXREF scan phase for the TWU report, ASMXREF generates the Tagged Source
Program (TSP). The ASMXREF report phase uses the Tagged Source Program to create the TWU report.
For details of the TSP see “Tagged Source Program (TSP)” on page 154.

The TWU report shows:
v The total number of matches (occurrences), of the specified token.
v The number of lines of code (LOC) scanned.

Date: 07/11/2008 ASMXREF V1.6.0 Symbol Where Used Report Page 1
Time: 12:19:34 Symbol to Module Map - All Symbols (SYMC)

Symbol Module Access Module Access Module Access Module Access Module Access
--
&SYS ASMTEST D
A ASMTEST P
ANY ASMTEST R
ASMHSAVE ASMTEST R D
ASMTEST ASMTEST LR
BEGIN ASMTEST L
BIN ASMTEST P
CHAIN ASMTEST L
DATWORK ASMTEST R D
DBLWORK ASMTEST RW D
DD ASMTEST L W
E ASMTEST P
EXIT ASMTEST L
FREEMAIN ASMTEST R M
GETMAIN ASMTEST R M
L ASMTEST P
LENWORK ASMTEST LR
LINKAGE ASMTEST P
LV ASMTEST P
MF ASMTEST P
MM ASMTEST W D
PARMS ASMTEST LR
R ASMTEST P
RETURN ASMTEST L
R0 ASMTEST W D
R1 ASMTEST RW D
R10 ASMTEST D
R11 ASMTEST RW D
R12 ASMTEST RW D
R13 ASMTEST RW D
R14 ASMTEST LRW D
R15 ASMTEST RW D
R2 ASMTEST D
R3 ASMTEST RW D
R4 ASMTEST D
R5 ASMTEST D
R6 ASMTEST D
R7 ASMTEST D
R8 ASMTEST D
R9 ASMTEST D
SYSTEM ASMTEST P
TIME ASMTEST R M
TIMEMFL ASMTEST LR
TIMWORK ASMTEST RW D
WORKAREA ASMTEST LR
WTO ASMTEST LR M
WTOMSG ASMTEST W D
YY ASMTEST L W
--
Access Keys: C=Comparison D=Definition E=External K=Class L=Label M=Macro O=Object P=Parameter R=Read W=Write

Figure 54. Sample SWU sorted via SYMC

Chapter 5. Using the Cross-Reference Facility 153

v The number of lines with matches.

Tagged Source Program (TSP)
When you run the ASMXREF scan phase for the TWU and SOR reports, ASMXREF generates the Tagged
Source Program (TSP).

On CMS ASMXREF creates the TSP in a file named filename DATATWU A, where filename is the name of
the control file.

on z/OS, the default name for the TSP, defined in the procedure supplied with ASMXREF, is
userid.TWU.TAGGED.FILE.

On z/VSE the default name for the TSP, defined in the sample JCL, is XRFTWU.

Note: ASMXREF creates the TSP in the same file for both the TWU and SOR reports.

The ASMXREF report phase uses the TSP to create the TWU and SOR reports. The TSP contains the
original source code records interspersed with comment records in the syntax of the language of the
source file. The comment records appear above the source line which identifies the token. The comments
show the token string encountered and a cumulative count of the number of times the scan has found the
token so far in the source file.

Unless you use the NOSEP statement to turn off the creation of the separators, ASMXREF creates
separators when it generates the TSP. For details on the NOSEP statement see “Token” on page 131.
Producing separators allows the TSP to be split into individual members that you can use to replace or
create macro or copy libraries. on z/OS, the separators are in IEBUPDTE format:
./ ADD NAME=source_file_name

You can run the IEBUPDTE utility program with the TSP as input.

ASMXREF V1.6.0 TOKEN WHERE USED REPORT PAGE 1

MODULE: ASMTEST Date: 07/11/2008 Time: 12:06:41
LANG : ASM
MATCHES TOKEN
------- ---

0 ’*C’’19*’
0 ’*DATE’
0 ’*P’’19*’
0 ’*YR’’
2 ’DAT*’
0 ’DATE’
0 ’DAY’
0 ’DD/MM/YY’
1 ’MM/DD/YY’
0 ’MM/YY’
0 ’MONTH’
2 ’TIME’
0 ’YEAR’
0 ’YR’
0 ’YY/MM/DD’
0 ’YYDDD’

LOC: 90 TOKEN MATCHES: 5 NUMBER OF LINES WITH MATCHES: 5

Figure 55. Sample Token Where Used (TWU) report

154 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

On CMS, the separators are in the format:
./ ADD NAME=source_file_name

You can run a REXX EXEC named ASMXSEP EXEC (supplied with ASMXREF) that splits the TSP into its
component files.

On z/VSE, the TSP contains Catalog statements that you can use as input to a LIBR job, that splits the
sequential file into members of a librarian sublibrary. The separator is in Librarian format:
CATALOG NAME=source_file_name.source_type REPLACE=YES

Chapter 5. Using the Cross-Reference Facility 155

./ ADD NAME=ASMTEST
*ASMZXREF MODULE = ASMTEST 07/11/2008 12:06:41
*ASMZXREF LANG = ASM
*ASMZXREF MATCHES = 1
ASMZXREF ’DAT’
ASMTEST TITLE ’- SAMPLE ASSEMBLY LANGUAGE PROGRAM WHICH USES DATES’ 00001000
* ** * 00002000
* LICENSED MATERIALS - PROPERTY OF IBM * 00003000
* * 00004000
* 5696-234 * 00005000
* * 00006000
* (C) COPYRIGHT IBM CORP. 1975, 2008. ALL RIGHTS RESERVED. * 00007000
* * 00008000
* US GOVERNMENT USERS RESTRICTED RIGHTS - USE, * 00009000
* DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP * 00010000
* SCHEDULE CONTRACT WITH IBM CORP. * 00011000
* * 00012000
* ** * 00013000
*** 00014000
* THE SAMPLE ASSEMBLER SOURCE IS INTENDED AS INPUT TO THE ASMXREF * 00015000
* PROGRAM. * 00016000
* NO CLAIMS ARE MADE AS TO THE FUNCTIONAL VALIDITY OF THE ASSEMBLER * 00017000
* CODE. * 00018000
*** 00019000
ASMTEST CSECT , REENTRANT HLASM 00020000
ASMTEST RMODE ANY LET THIS RUN ANYWHERE 00021000
ASMTEST AMODE 31 00022000

SPACE 2 00023000
USING *,R15 ADDRESSABILITY TO ENTRY CODE 00024000
B BEGIN 00025000
DC C’ASMTEST.&SYSDATE..&SYSTIME’ 00026000

BEGIN STM R14,R12,12(R13) SAVE CALLERS REGISTERS 00027000
LR R12,R15 SAVE PTR TO EXIT PARAMETER LIST 00028000
DROP R15 00029000
USING ASMTEST,R12 00030000
LR R11,R1 SAVE PTR TO EXIT PARAMETER LIST 00031000
USING PARMS,R11 00032000
LR R3,R13 GRAB PTR TO CALLERS SAVE AREA 00033000
LA R0,LENWORK LOAD LENGTH OF WORK AREA NEEDED 00034000
GETMAIN R,LV=(0) GET STORAGE, LENGTH IN R0 00035000
LR R13,R1 POINT R13 AT SAVE AREA 00036000
USING WORKAREA,R13 00037000

CHAIN ST R13,8(,R3) CHAIN THE CALLER TO THE EXIT 00038000
ST R3,4(,R13) CHAIN THE EXIT TO THE CALLER 00039000
SPACE 2 00040000
XC TIMWORK,TIMWORK CLEAR THE DECK. 00041000
LA 0,TIMWORK 00042000
LA 2,TIMEMFL 00043000

*ASMZXREF MATCHES = 1
*ASMZXREF ’TIME’

TIME BIN,(0),LINKAGE=SYSTEM,MF=(E,(2)) ASK THE TIME. 00044000
UNPK DBLWORK(3),DATWORK+1(2) UNPACK THE IMPORTANT BIT 00045000
OC DBLWORK(2),=C’00’ TURN INTO CHARACTERS 00046000
MVC WTOMSG,DBLWORK COPY THE DISPLAY FORMAT TO MSG 00047000

WTO WTO ’XX IS THE TWO DIGIT YEAR.’ 00048000
WTOMSG EQU WTO+8,2 00049000

SPACE 1 00050000
MVI MM/DD/YY,’MM/DD/YY’ 00051000

EXIT LR R1,R13 ADDRESS OF WORK AREA (FOR FREE) 00052000
L R13,4(,R13) UNCHAIN SAVE AREAS 00053000
LA R0,LENWORK LENGTH TO FREE 00054000
FREEMAIN R,LV=(0),A=(1) LENGTH IN R0, ADDR IN R1 00055000

Figure 56. Sample Tagged Source Program (TSP) part 1 of 2

156 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

RETURN LM R14,R12,12(R13) RESTORE CALLERS REGISTERS 00056000
XR R15,R15 SET THE RC TO ZERO 00057000
BR R14 RETURN TO CALLER 00058000
SPACE 1 00059000

WORKAREA DSECT , 00060000
ASMHSAVE DS 9D 00061000
TIMWORK DS D 00062000
*ASMZXREF MATCHES = 2
ASMZXREF ’DAT’
DATWORK DS D 00063000
DBLWORK DS D 00064000
*ASMZXREF MATCHES = 2
*ASMZXREF ’TIME’
TIMEMFL TIME ,LINKAGE=SYSTEM,MF=L 00065000
LENWORK EQU *-ASMHSAVE 00066000
&SYS DS D 00067000
*ASMZXREF MATCHES = 1
*ASMZXREF ’MM/DD/YY’
MM/DD/YY DS F 00068000

SPACE 1 00069000
R0 EQU 0 00070000
R1 EQU 1 00071000
R2 EQU 2 00072000
R3 EQU 3 00073000
R4 EQU 4 00074000
R5 EQU 5 00075000
R6 EQU 6 00076000
R7 EQU 7 00077000
R8 EQU 8 00078000
R9 EQU 9 00079000
R10 EQU 10 00080000
R11 EQU 11 00081000
R12 EQU 12 00082000
R13 EQU 13 00083000
R14 EQU 14 00084000
R15 EQU 15 00085000

SPACE 1 00086000
PARMS DSECT 00087000

DS 2F 00088000
SPACE 1 00089000

*ASMZXREF SUMMARY TOTAL TOKENS = 16
*ASMZXREF SUMMARY TOTAL MATCHES = 0
*ASMZXREF ’*C’’19*’
*ASMZXREF SUMMARY TOTAL MATCHES = 0
*ASMZXREF ’*DATE’
*ASMZXREF SUMMARY TOTAL MATCHES = 0
*ASMZXREF ’*P’’19*’
*ASMZXREF SUMMARY TOTAL MATCHES = 0
*ASMZXREF ’*YR’’
*ASMZXREF SUMMARY TOTAL MATCHES = 2
ASMZXREF ’DAT’
*ASMZXREF SUMMARY TOTAL MATCHES = 0
*ASMZXREF ’DATE’
*ASMZXREF SUMMARY TOTAL MATCHES = 0
*ASMZXREF ’DAY’
*ASMZXREF SUMMARY TOTAL MATCHES = 0
*ASMZXREF ’DD/MM/YY’
*ASMZXREF SUMMARY TOTAL MATCHES = 1
*ASMZXREF ’MM/DD/YY’
*ASMZXREF SUMMARY TOTAL MATCHES = 0
*ASMZXREF ’MM/YY’
*ASMZXREF SUMMARY TOTAL MATCHES = 0
*ASMZXREF ’MONTH’
*ASMZXREF SUMMARY TOTAL MATCHES = 2
*ASMZXREF ’TIME’
*ASMZXREF SUMMARY TOTAL MATCHES = 0
*ASMZXREF ’YEAR’
*ASMZXREF SUMMARY TOTAL MATCHES = 0
*ASMZXREF ’YR’
*ASMZXREF SUMMARY TOTAL MATCHES = 0
*ASMZXREF ’YY/MM/DD’
*ASMZXREF SUMMARY TOTAL MATCHES = 0

Chapter 5. Using the Cross-Reference Facility 157

ASMXREF Messages
ASMXREF creates a message file containing information about its processing and about any error
conditions it detects. Unless otherwise overridden, the message file uses the following file naming
conventions:
v For CMS - filename LIST filemode

where filename is the name of the control file.
v For z/OS - SYSPRINT
v For z/VSE - SYSLST

This section explains the ASMXREF message format and the messages you may receive.

The message format is as follows:
ASMZnnn msglevel message_text

ASMZnnn
The error message number.

msglevel
A letter indicating the severity level. The letter associated with a numerical MSGLEVEL code or
return code, as described in Table 22

message_text
The character string message_text denotes variable text with specific information such as a filename,
table_name or record number.

Table 22. Message level

Message Level Return Code Description Details

I 0 Information ASMXREF informs you of actions taken. You probably
expect the action. These messages keep you informed of
the program's progress.

W 4 Warning An ASMXREF action was taken or a condition
encountered that may not produce the correct results.
The condition or action taken is given in the message.

E 8 Error These errors are expected to result in incorrect data. For
example, an INCLUDE control statement explicitly
requests that a specific module be processed, but the
module is not found in the library.

S 12 Severe error These messages indicate errors that can effect the entire
run, such as ASMXREF control statement syntax errors.
No processing is done when this type of error is found.

T 16 Terminating error
condition

ASMXREF terminates processing when this error occurs.

ASMXREF issues all messages whose severity is equal to or greater than the message level you specify
with the MSGLEVEL parameter.

Message list

ASMZ003S statement_type Overflow in module_name
processing record record_number

Explanation: This error message occurs when a table

in an ASMXREF system module overflows.

1. Typically this happens when a source statement is
longer than the default sizes (currently 50,000

ASMZ003S

158 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

characters) provided for the associated parameters.
The easiest way to fix the overflow is to use the
ITBSIZE and LOGSIZE parameters in the control
file to specify a larger size. See page “Parm” on
page 130 for details on the PARM control statement.
For example, for the ITB or Logical Statement Table
overflows, specify a PARMcontrol statement
following the LIBRARY control statement in the
control file as follows:

LIBRARY LIB=TEST1,TYPE=CMS,LANGUAGE=ASM
PARM ITBSIZE=100000
PARM LOGSIZE=100000

The size of the parameters is limited only by the
amount of memory available.

2. This message could also occur because of a
language mismatch. For example, if ASMXREF is
scanning an assembler language program using the
COBOL language processor, a table could overflow
when ASMXREF is searching for the ending
delimiter. In such cases, you must specify the
correct language using the LANGUAGE parameter
in the control file.

System action: The ASMXREF run terminates

Programmer response: Increase the table sizes by
specifying the ITBSIZE and LOGSIZE parameters as
detailed in step 1 above and re-run ASMXREF, or
correct the LANGUAGE statement.

ASMZ006T OPEN failed for XRFTOKN file.

Explanation: The file containing the TOKEN
information is not found when executing ASMXREF.

System action: The ASMXREF run terminates.

Programmer response: Check the file definition for
XRFTOKN in the job, and re-runASMXREF . If the
problem persists, contact your IBM service
representative.

ASMZ007W module_name previously processed from
Library library_name

Explanation: (CMS only) The following Module was
previously processed - module_name

ASMXREF found the name of a member that has
already been processed. If you specified YES to Process
duplicate modules when you run the SCAN phase,
ASMXREF processes modules with duplicate names;
otherwise, ASMXREF bypasses them.

System action: The ASMXREF run continues.

Programmer response: Warning message only.

ASMZ008T The LIBRARY statement with
TYPE=SEQ must have one INCLUDE
control statement with the module name
specified.

Explanation: You can specify sequential files only once
with the Include control statement with module name.

System action: The ASMXREF run terminates.

Programmer response: Specify include control
statements for each source file you need scanned and
re-run ASMXREF.

ASMZ012T Include, Exclude, & Option Control
Statements must be preceded by a
library control statement.

Explanation: A LIBRARY control statement has been
omitted or misplaced.

System action: The ASMXREF run terminates.

Programmer response: Edit the ASMXREF control
statements to correct the position of the LIBRARY
statement and re-run ASMXREF.

ASMZ013T Control statement READ error.

Explanation: ASMXREF was unable to read the file
containing the control statements.

System action: The ASMXREF run terminates.

Programmer response: Examine the system or job logs
to determine why the control statement file could not
be read. There may be system error messages indicating
an open or read error on this file. Consult your Systems
Programmer for assistance.

ASMZ016W Analysis error in record record_number
near column column_number. The
following line(s) were ignored:

Explanation: This error might be because of
anASMXREF scan misinterpretation, or a syntax
error.ASMXREF displays the records that were skipped
and not included in the intermediate data files for
report inclusion and calculations.

System action: The ASMXREF run continues.

Programmer response: Check the LIBRARY control
statement to determine whether the language
parameter has been specified correctly. If the problem
cannot be determined please contact your IBM service
representative.

ASMZ017T Unable to OPEN file filename

Explanation: ASMXREF could not open the file
filename.

System action: The ASMXREF run terminates.

ASMZ006T • ASMZ017T

Chapter 5. Using the Cross-Reference Facility 159

Programmer response: Examine the system or job logs
to assist in resolving why the file could not be read.
There may be system error messages indicating an
open or read error on this file. Consult your Systems
Programmer for assistance.

ASMZ023T Modulename not found.

Explanation: The following Module was not found -
Modulename.

System action: The ASMXREF scan terminates.

Programmer response: The FSOPEN macro failed for
CMS when opening a library file. Consult your systems
programmer for problem resolution. If the problem
persists contact your IBM service representative.

ASMZ028T OPEN failed for SYSPRINT.

Explanation: The report file defined by the
FILEDEF/DD/DLBL statement for SYSPRINT was not
found.

System action: The ASMXREP run terminates with
user abend code 016.

Programmer response: Check the file definition for
SYSPRINT in the job. If the problem persists, contact
your IBM service representative.

ASMZ029T OPEN failed for SYSINDS.

Explanation: The intermediate data file is not found
when executing ASMXREP.

System action: The ASMXREP run terminates.

Programmer response: Check the
FILEDEF/DD/DLBL statement for SYSINDS in the job
step.

ASMZ030T OPEN failed for SYSINOU file.

Explanation: The report file defined by the
FILEDEF/DD/DLBL statement for SYSINOU not
found.

System action: The ASMXREP run terminates.

Programmer response: Check the
FILEDEF/DD/DLBL statement for SYSINOU in the job
step.

ASMZ031T Memory allocation failed in
ASMZTWUS.

Explanation: Memory allocation failed in module
ASMZTWUS.

System action: The ASMXREP run terminates with
user abend code 018.

Programmer response: Check the region size if
running on z/OS and partition size if running on

z/VSE. For z/VM, check the storage defined for the
job. Increase the storage size. If the problem persists,
contact your IBM service representative.

ASMZ032T PUT failed for record in SYSINOU.

Explanation: The PUT macro failed.

System action: The ASMXREP run terminates with
user abend code 020.

Programmer response: Examine the system job logs
for associated messages. Consult your systems
programmer to correct the problem. If the problem
persists, contact your IBM service representative.

ASMZ033T TOKEN statement does not contain any
parameters.

Explanation: A TOKEN statement has been detected
which does not contain a keyword.

System action: The ASMXREF run terminates.

Programmer response: Complete the TOKEN
statement in the XRFTOKN file and re-run ASMXREF.

ASMZ034T Error in user control statements.
Processing terminated.

Explanation: There are errors in the ASMXREF control
statements.

System action: The ASMXREF run terminates.

Programmer response: ASMXREF has detected invalid
control statements. Correct the control statements and
re-runASMXREF .

ASMZ036T TOKEN statement contains an invalid
keyword.

Explanation: The TOKEN statement in the XRFTOKN
file allows only certain keywords. ASMXREF has
detected an invalid keyword.

System action: The ASMXREF run terminates.

Programmer response: Correct the TOKEN statement,
in the XRFTOKN file, that contains an invalid keyword
and re-run ASMXREF.

ASMZ037T Parsing error in TOKEN statement.

Explanation: A parsing error is detected when
processing the XRFTOKN file.

System action: The ASMXREF run terminates.

Programmer response: Correct the erroneous TOKEN
statement in the XRFTOKN file, and re-run ASMXREF.

ASMZ023T • ASMZ037T

160 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

ASMZ038T File XRFTOKN contains an invalid
statement.

Explanation: The XRFTOKN file can only contain the
following type of information: either a comment line
(starting with * in column one) or a TOKEN statement
(starting with the TOKEN keyword).

System action: The ASMXREF run terminates.

Programmer response: Correct the XRFTOKN file to
ensure that it contains only allowed data, and re-run
ASMXREF.

ASMZ039T No end-delimiter found in TOKEN
statement.

Explanation: A TOKEN statement must be specified in
matching, enclosing delimiters.ASMXREF has detected
a TOKEN statement which contains a start-delimiter
but does not contain an end-delimiter.

System action: The ASMXREF run terminates.

Programmer response: Correct the XRFTOKN file to
ensure that all tokens have matching start and
end-delimiters and then re-run ASMXREF.

ASMZ042T An INC= statement must precede an
EXC= statement

Explanation: A TOKEN EXC= keyword has been
specified before an INC= control statement.

System action: Insert a TOKEN INC= control
statement before the TOKEN EXC= statement.

Programmer response: The ASMXREF run terminates.

ASMZ043T Exclude statements are only applicable
to generically specified tokens.

Explanation: A TOKEN EXC= keyword has been
specified for an explicit TOKEN INC= token (a TOKEN
INC= statement without wildcards).

System action: Remove the exclude statement in error,
or make the TOKEN INC= statement generic (with
wildcards).

Programmer response: The ASMXREF run terminates.

ASMZ044T The macro_name macro failed in
ASMXREF module module_name

Explanation: An ASMXREF internal operating system
macro failed.

System action: Examine the system and job logs for
associated error messages. Consult your system
programmer to determine whether the processing error
is the result of external errors. If the problem is external
rectify it and re-run ASMXREF; otherwise contact your
IBM service representative.

Programmer response: The ASMXREF run terminates.

ASMZ045T An ABEND occurred in ASMXREF
processing and a diagnostic dump has
been requested.

Explanation: An abnormal termination occurred
during ASMXREF processing.

System action: Examine the system and job logs for
associated error messages. Consult with the system
programmer to determine whether the processing error
is the result of external errors. If the problem is external
rectify it and re-run ASMXREF; otherwise contact your
IBM service representative.

Programmer response: The ASMXREF run terminates.

ASMZ046T End-delimiter is not the last character in
the TOKEN statement.

Explanation: A character has been detected past a
token's matching enclosing delimiters. No additional
data is allowed past the end-delimiter.

System action: The ASMXREF run terminates.

Programmer response: Correct the XRFTOKN file to
ensure that the token is enclosed within delimiters and
no additional data follows the delimiter, and re-run
ASMXREF.

ASMZ048T At least one statement is required in file
XRFTOKN.

Explanation: The XRFTOKN file must contain at least
one record which can either be a comment line (starting
with * in column one) or a TOKEN statement (starting
with the TOKEN keyword).

System action: The ASMXREF run terminates.

Programmer response: Edit the XRFTOKN file to
provide the requested information, and re-run
ASMXREF.

ASMZ052T Report name not specified.

Explanation: A valid Report name must be specified.

System action: The ASMXREP run terminates.

Programmer response: Specify the report name and
re-run ASMXREP.

ASMZ053T Incorrect Report name specified: report.

Explanation: Report name must be one of the
following: CF, LOC, MWU, SWU, TWU, or SOR.

System action: The ASMXREP run terminates.

Programmer response: Correct the erroneous report
and re-run ASMXREP.

ASMZ038T • ASMZ053T

Chapter 5. Using the Cross-Reference Facility 161

ASMZ054T Error Reading defaults_file_name
DEFAULTS file.

Explanation: An error occurred while reading the
DEFAULTS file.

System action: The ASMXREP run terminates.

Programmer response: Verify the integrity of the
DEFAULTS file and re-run ASMXREP.

ASMZ055T Cannot find defaults_file_name
DEFAULTS file on any accessed disk.

Explanation: The DEFAULTS file could not be found.

System action: The ASMXREP run terminates.

Programmer response: Ensure the DEFAULTS file is
accessible or that the DEFAULT file is specified and
re-run ASMXREP.

ASMZ056T No STAE Exit will be taken due to
errors encountered when 'STAE' was
issued.

Explanation: The STAE macro issued to install abend
trapping and error recovery failed with a non-zero
return code.

System action: The ASMXREF run terminates.

Programmer response: Examine the system or job logs
to determine whether system error messages were
issued. Consult your systems programmer to assist in
problem resolution. If the problem persists consult your
IBM service representative.

ASMZ057T Unable to load module_name

Explanation: An ASMXREF internal component is
unable to be dynamically loaded.

System action: The ASMXREF run terminates.

Programmer response: Consult your systems
programmer to confirm the ASMXREF install is error
free. Examine the system and job logs for associated
error messages. If the problem persists please contact
your IBM service representative.

ASMZ058T Incorrect CMSTypeFlag used:
cmstype_flag.

Explanation: The only valid CMSTypeFlag are: HT or
RT.

System action: The ASMXREP run terminates.

Programmer response: Correct the erroneous
CMSTypeFlag and re-run ASMXREP.

ASMZ062T Page Length Greater than 20 is required.

Explanation: A Page Length greater than 20
encountered.

System action: The ASMXREP run terminates.

Programmer response: Change the Page Length to be
greater than 20 and re-run ASMXREP.

ASMZ066T First record implies language is
language_name

Explanation: The language in the LANGUAGE control
statement is unknown to ASMXREF.

System action: The ASMXREF run terminates.

Programmer response: ASMXREF is unable to
determine the source language scanned. Change the
control statement, LIBRARY
LANGUAGE=language_name, to specify a language
keyword defined in the XRFLANG file.

ASMZ067T Language Keyword keyword not
recognized. Use LANGUAGE Control
statement to respecify Language.

Explanation: An invalid LIBRARY LANGUAGE=
control statement has been specified.

System action: The ASMXREF run terminates.

Programmer response: The specified language is not
valid. Change the control statement to specify a valid
language type.

ASMZ073E SWU report not supported for language

Explanation: The SWU report is not available for the
language specified.

System action: None, ASMXREF stops processing.

Programmer response: Change the LIBRARY
LANGUAGE= control statement to specify a language
supported by the SWU report.

ASMZ074T Invalid Library Type library_type

Explanation: ASMXREF detected an invalid library
type on the LIBRARY control statement.

System action: The ASMXREF run terminates.

Programmer response: Examine the library control
statement and correct the TYPE keyword value and
re-run ASMXREF.

ASMZ075T Library Type library_type not supported
on this Operating System.

Explanation: A library type is specified that is not
appropriate for this operating system. For example: PDS
specified on CMS.

ASMZ054T • ASMZ075T

162 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

System action: The ASMXREF run terminates.

Programmer response: Correct the LIBRARY TYPE
keyword value to specify the correct TYPE value and
re-run ASMXREF.

ASMZ076T Filetype not specified for file_name in
Library library_name

Explanation: On CMS, each record of the source
listing file must contain a valid file name and file type.
ASMXREF has detected a file name in the source list
file that does not specify the file type. If a file mode is
not specified, ASMXREF uses the first file found in the
standard CMS search sequence.

System action: The ASMXREF run terminates.

Programmer response: Ensure that the source list file
on CMS contains a list of files with valid file types and
re-run ASMXREF.

ASMZ078T No file names specified in Library
library_name

Explanation: (CMS only) None of the file names
specified in the source list file can be found by
ASMXREF.

System action: The ASMXREF run terminates.

Programmer response: None of the specified files
were found in the search order. Ensure that the files
included in the source list file are accessible to your
CMS machine.

ASMZ079T filetype is a Reserved Filetype.

Explanation: (CMS only) filetype is a Reserved File
Extension.

A reserved file type has been used.

System action: The ASMXREF run terminates.

Programmer response: On CMS, confirm that the file
type of the files listed in the source list file are of a
valid file type. Correct the file type, then re-run
ASMXREF.

ASMZ080T Failure in allocating storage in Module
module_name

Explanation: A GETMAIN/GETVIS macro invocation
failed to allocate virtual storage.

System action: The ASMXREF run terminates.

Programmer response: Try increasing your
region/storage size and re-run ASMXREF. If the
problem persists contact your IBM service
representative.

ASMZ081E Control statement syntax error near
column column_number

Explanation: ASMXREF met an error while parsing
the ASMXREF control statements. The message
indicates the column and line position that caused the
error.

System action: The ASMXREF run terminates.

Programmer response: Examine the control statements
for error. Correct the syntax of the statement in error
and re-run ASMXREF.

ASMZ082T Failure to release storage in Module
module_name

Explanation: A FREEMAIN/FREEVIS macro failed to
release virtual storage.

System action: The ASMXREF run terminates.

Programmer response: Examine the system job logs
for associated error messages. Consult your systems
programmer for problem resolution. If the problem
persists contact your IBM service representative.

ASMZ084W Parsing error. The following lines were
ignored:

Explanation: The lines following the error were
ignored.

System action: The ASMXREF run continues.

Programmer response: This warning message is
issued when the ASMXREF parser encounters source
code it cannot parse. The source lines in error are
skipped.

ASMZ095T Input file filename DATA rep missing for
Report report.

Explanation: The required input file is missing for the
requested report.

System action: The ASMXREP run terminates.

Programmer response: Specify the Report in the Input
File and re-run ASMXREP.

ASMZ096T file_name DATA report does not match
report Required LRECL of valid_format.

Explanation: The file does not have a valid format.
The following formats are valid: for Report = 'MWU'
the LRECL-format must be "F 96" for Report = 'SWU'
the LRECL-format must be "F 93" for Report = 'TWU'
the LRECL-format must be "F 80" for Report = 'SOR'
the LRECL-format must be "F 80".

System action: The ASMXREP run terminates.

Programmer response: Correct the errors for the
DATA file and re-run ASMXREP.

ASMZ076T • ASMZ096T

Chapter 5. Using the Cross-Reference Facility 163

ASMZ099W Unrecognized Character in record
record_number near column
column_number

Explanation: ASMXREF found an invalid character.

System action: The ASMXREF run continues.

Programmer response: This warning message
identifies the column position and record of the
character in error.

ASMZ100T Incorrect Sort Order used: sort_order.

Explanation: Sort Order must be one of the following:
MAC, MOD, PART, or SYM.

System action: The ASMXREP run terminates.

Programmer response: Correct the erroneous Sort
Order and re-run ASMXREP.

ASMZ101T Incorrect Sort Order for SWU Report:
sort_order.

Explanation: Sort Order for SWU Report must be one
of the following: MOD or SYM.

System action: The ASMXREP run terminates.

Programmer response: Correct the erroneous Sort
Order for SWU report and re-run ASMXREP.

ASMZ102T Incorrect Sort Order for MWU Report:
sort_order.

Explanation: Sort Order for MWU Report must be one
of the following: MAC or PART.

System action: The ASMXREP run terminates.

Programmer response: Correct the erroneous Sort
Order for MWU report and re-run ASMXREP.

ASMZ103T No STAE work area passed from
supervisor. No retry possible.

Explanation: No retry possible.

System action: The ASMXREF run terminates.

Programmer response: ASMXREF is unable to recover
from an ABEND condition. The supervisor should have
allocated storage and passed this to the ASMXREF
recovery routine. The supervisor is unable to allocate
storage for this and the ASMXREF recovery fails.
Examine the system job logs for associated messages
and consult your systems programmer for problem
resolution. If the problem persists, consult your IBM
service representative.

ASMZ104T Symbol Where Used Table overflow.
Use SWUSIZE= PARM to rectify.

Explanation: The SWU table has insufficient space.

System action: The ASMXREF run terminates.

Programmer response: Specify a PARM
SWUSIZE=nnnnn parameter in the ASMXREF control
statements. If the parameter is already specified
increase the numeric value and re-run ASMXREF. If the
problem persists contact your IBM service
representative.

ASMZ106T Macro Where Used Table overflow. Use
MWUSIZE= PARM to rectify.

Explanation: The MWU table has insufficient space.

System action: The ASMXREF run terminates.

Programmer response: Specify a PARM
MWUSIZE=nnnnn parameter in the ASMXREF control
statements. If the parameter is already specified
increase the numeric value and re-run ASMXREF. If the
problem persists contact your IBM service
representative.

ASMZ111T Work Disk workmode not a valid Disk
Accessed in WRITE Mode.

Explanation: The Work Disk is not a valid disk
accessed in WRITE Mode.

System action: The ASMXREP run terminates.

Programmer response: Ensure the Work Disk is a
valid Disk Accessed in WRITE Mode and re-run
ASMXREP.

ASMZ112T Work Disk workmode not accessed.

Explanation: The Work Disk cannot be accessed.

System action: The ASMXREP run terminates.

Programmer response: Ensure the Work Disk is
accessible. and re-run ASMXREP.

ASMZ113T Work Disk workmode not accessed in
WRITE Mode. Specify another Output
Disk.

Explanation: The Work Disk cannot be accessed in
WRITE Mode.

System action: The ASMXREP run terminates.

Programmer response: Specify another Output Disk
and re-run ASMXREP.

ASMZ099W • ASMZ113T

164 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

ASMZ116I ASMXRPT completed with Return Code
= exitrc.

Explanation: The ASMXREP program terminated with
a Return Code.

System action: The ASMXREP run terminates.

Programmer response: Check the value of the Return
Code.

ASMZ118T Sort Order not required for Report
report.

Explanation: The ASMXREP program terminated with
a Return Code.

System action: The ASMXREP run terminates.

Programmer response: Check the Sort Order is correct
for the report specified.

ASMZ120I TSP File fn ft fm is being processed.'

Explanation: (CMS only) The TSP file fn ft fm is being
processed.

System action: None.

Programmer response: None.

ASMZ122T CNTLMode cntlmode is Incorrect.

Explanation: The disk mode specified for the CNTL
file is in correct.

System action: The ASMXREF run terminates.

Programmer response: Correct the parm and re-run
ASMXREF.

ASMZ124I Default sort order SYM used for SWU
reports.

Explanation: No sort parameter passed to ASMVRPT.

System action: The ASMXRPT run continues.

Programmer response: The default sort sequence is
used. Refer to the parameters option to change the sort
sequence. To suppress this message, supply the default
sort sequence as a parameter.

ASMZ125T This library cannot be processed
because of problems reading
SDDS(CLEAR) or directory (PDS).

Explanation: ASMXREF has encountered problems
with a PDS directory.

System action: The ASMXREF run terminates.

Programmer response: Examine the system job logs
for associated messages. Consult your systems
programmer for problem resolution. If the problem
persists contact your IBM service representative.

ASMZ126T Dynamic allocation failed for library
library_name

Explanation: ASMXREF is unable to find the library
library_name.

System action: The ASMXREF run terminates.

Programmer response: Ensure that the library
specified in the ASMXREF control statement is
accessible and specified correctly. If the library is
accessible and no other associated system or job log
messages are issued, consult your IBM service
representative.

ASMZ127I Default sort order MAC used for MWU
reports.

Explanation: No sort parameter passed to ASMVRPT.

System action: The ASMXRPT run continues.

Programmer response: The default sort sequence is
used. Refer to the parameters option to change the sort
sequence. To suppress this message, supply the default
sort sequence as a parameter.

ASMZ134T filename file_type file_mode must have
RECFM = F and LRECL = 80.

Explanation: The attribute of the above mentioned file
must have the following attributes: RECFM = F and
LRECL = 80.

System action: The ASMXREF run terminates.

Programmer response: Correct the attributes for
RECFM/LRECL and re-run ASMXREF.

ASMZ135T filename CNTL * not found.

Explanation: The file referenced above could not be
found.

System action: The ASMXREF run terminates.

Programmer response: Ensure the CNTL file is
present and re-run ASMXREF.

ASMZ136T Work Disk work_mode is Incorrect.

Explanation: A problem with the Work Disk
encountered.

System action: The ASMXREF run terminates.

Programmer response: Check for the integrity of the
Work Disk and re-run ASMXREF.

ASMZ137T Work Disk work_mode is not Accessed in
Write Mode.

Explanation: The Work Disk cannot be accessed in
WRITE Mode.

System action: The ASMXREF run terminates.

ASMZ116I • ASMZ137T

Chapter 5. Using the Cross-Reference Facility 165

Programmer response: Ensure the Work Disk is
accessible in Write Mode and re-run ASMXREF.

ASMZ138T ASMXSEP completed with Return Code
= rc.

Explanation: (CMS only) The TSP file has been
processed by ASMXSEP procedure.

System action: Check the return code for any
processing errors.

Programmer response: Re-run the process if needed.

ASMZ140W module_name was not found in library.

Explanation: The file module_name is either empty or
not found.

An INCLUDE control statement named a module not
in the input source library.

System action: ASMXREF continues.

Programmer response: The included modules (source
files) were either empty or do not exist in the source
library. Ensure that the included names are correct and
re-run ASMXREF.

ASMZ141T Message Level must be a numeric value
between 0 and 16.

Explanation: The Message Level parameter contains
an erroneous value.

System action: The ASMXREF run terminates.

Programmer response: Correct the erroneous Message
Level value and re-run ASMXREF.

ASMZ142T Incorrect Duplicates parm used:
duplicates.

Explanation: The Duplicate parameter specified is
incorrect.

System action: The ASMXREF run terminates.

Programmer response: Correct the erroneous
Duplicate parm and rerunASMXREF .

ASMZ143T Page Length Field must contain a
numeric value.

Explanation: An erroneous value for the Page Length
Field was coded.

System action: The ASMXREF run terminates.

Programmer response: Correct the erroneous Page
Length Field and re-run ASMXREF.

ASMZ144T Page Length must be between 20 and
999.

Explanation: An erroneous Page Length was coded.

System action: The ASMXREF run terminates.

Programmer response: Correct the Page Length Field
and re-run ASMXREF.

ASMZ145T module_name is empty or file not found.

Explanation: The following file is either empty or not
found - module_name

This module does not exist, or an I/O error occurred
during the search.

System action: The ASMXREF run terminates.

Programmer response: Examine the system job logs
for associated messages. Consult your systems
programmer and correct the problem. If the problem
persists contact your IBM service representative.

ASMZ146W Message limit exceeded. No more
X-level messages will be printed

Explanation: More than 60 messages of severity level
“X” have been issued. All further messages of the same
severity level are suppressed

System action: The ASMXREF run continues.

Programmer response: The default message limit is
60. For diagnosis specify a message level of 1 to allow
all messages to be printed re-run ASMXREF.

ASMZ149T Incorrect ReturnMsg parm used:
return─msg.

Explanation: An erroneous ReturnMsg parm was
used.

System action: The ASMXREF run terminates.

Programmer response: Correct the ReturnMsg parm
to be 'YES' or 'NO' and re-runASMXREF .

ASMZ165T Syntax error in report_id report parm
field.

Explanation: No data for the indicated report is
produced.

System action: The ASMXREF run terminates.

Programmer response: Correct the erroneous PARM
field for the indicated report and re-run ASMXREF.

ASMZ167W Empty Library library_name

Explanation: This error occurs most often on z/OS
when a PDS library is empty.

System action: The ASMXREF run continues.

ASMZ138T • ASMZ167W

166 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Programmer response: Ensure that the LIBRARY
control statement has specified the correct PDS. The
user can use system utilities to verify the content of the
PDS. If the PDS has been specified correctly and has
valid members, contact your IBM service
representative.

ASMZ169T Token exceeds system limit of nn
characters.

Explanation: The ASMXREF control statement parser
has detected a token greater then the limit of nn
characters.

System action: The ASMXREF run terminates.

Programmer response: Shorten the incorrect token to
less than the limit of nn characters, and re-run
ASMXREF.

ASMZ170T Exclude tokens may not be specified for
non-generic scan tokens.

Explanation: The ASMXREF control statement parser
has detected a TOKEN EXCLUDE statement specified
with a mask character (wildcard).

System action: The ASMXREF run terminates.

Programmer response: TOKEN EXCLUDE statements
must not contain a mask character. Remove the mask
character from the incorrect exclude token statement, or
remove the entire exclude token statement, and re-run
ASMXREF.

ASMZ171I The TOKEN NODEFLT option is in
effect. There will be no default token
list processing.

Explanation: The default token list processing has
been turned off with the TOKEN NODEFLT statement
in the XRFTOKN input file. Confirm that this option is
intended.

System action: None, ASMXREF continues.

Programmer response: None.

ASMZ172I No DEFAULT tokens were found in the
XRFLANG file.

Explanation: DEFAULT TOKEN header not found in
XRFLANG input file. Confirm that this option is
intended.

System action: None, ASMXREF continues.

Programmer response: None.

ASMZ173T No DEFAULT tokens were found in the
XRFLANG file and there are no TOKEN
statements specified in XRFTOKN.

Explanation: No TOKEN statements were found in
XRFTOKN file and no default tokens were specified in
XRFLANG file.

System action: None, ASMXREF terminates.

Programmer response: Either add TOKEN statements
into the XRFTOKN file, remove the TOKEN NODEFLT
statement, or add DEFAULT TOKENS in the
XRFLANG file, and re-run ASMXREF.

ASMZ174T The TOKEN delimiters were not
matched in the MASK token:
token_in_error

Explanation: Tokens must be specified with matching
enclosing delimiters.

System action: The ASMXREF run terminates.

Programmer response: Enclose the TOKEN statement
in matching delimiters, and re-runASMXREF .

ASMZ175T The token MASK statement is in error:
token_mask

Explanation: The token MASK statement must be
specified in matching enclosing delimiters. The mask
delimiter character cannot be longer than one character.

System action: The ASMXREF run terminates.

Programmer response: Edit the incorrect token mask,
and re-run ASMXREF.

ASMZ176I No matching LANG= header found in
the XRFLANG file for this run.

Explanation: The XRFLANG file does not have a
language header for the one specified in the LIBRARY
LANGUAGE= statement specified for this run.
ASMXREF uses the default of ASM (assembler).

System action: None, ASMXREF continues. Confirm
this is correct.

Programmer response: None.

ASMZ177T TOKEN NODEFLT is specified without
any TOKEN INC/EXC in XRFTOKN
file.

Explanation: The XRFTOKN file does not have any
tokens and processing of the default tokens has been
turned off with the TOKEN NODEFLT statement.

System action: None, ASMXREF terminates.

Programmer response: Enter token statements in the
XRFTOKN file or remove the TOKEN NODEFLT
statement from the XRFTOKN file.

ASMZ169T • ASMZ177T

Chapter 5. Using the Cross-Reference Facility 167

ASMZ178T Unable to open XRFLANG file.

Explanation: The XRFLANG file is not available.

System action: The ASMXREF run terminates.

Programmer response: Ensure job control includes the
XRFLANG file definition.

ASMZ179T ASMZXREP encountered array index
out of bounds in ASMZTWUS.

Explanation: Array index is out of bounds.

System action: The ASMXREP run terminates.

Programmer response: Report this error condition to
your IBM service representative.

ASMZ180T ASMZXREP encountered an incorrect
file format in ASMZTWUS.

Explanation: The TWU file format is incorrect.

System action: The ASMXREP run terminates.

Programmer response: Report this error condition to
your IBM service representative.

ASMZ181T ASMZXREP encountered an incorrect
file format ASMZTWUS.

Explanation: The TWU file format is incorrect.

System action: The ASMXREP run terminates.

Programmer response: Report this error condition to
your IBM service representative.

ASMZ182I MEMTYPE control card not specified.
The default of A is used.

Explanation: For z/VSE users, MEMTYPE control card
is need for processing, if not included it defaults to 'A'.

System action: The ASMXREF run continues.

Programmer response: None.

ASMZ183I LANGUAGE control card not specified.
The default of ASM is used.

Explanation: The LIBRARY LANGUAGE control card
is not specified. ASMXREF defaults to LIBRARY
LANGUAGE=ASM

System action: The ASMXREF run continues.

Programmer response: None.

ASMZ184I Default sort order MOD used for LOC
reports.

Explanation: No sort parameter passed to ASMVRPT.

System action: The ASMXRPT run continues.

Programmer response: The default sort sequence is
used. Refer to the parameters option to change the sort
sequence. To suppress this message, supply the default
sort sequence as a parameter.

ASMZ185I Default sort order MAC used for CFC
reports.

Explanation: No sort parameter passed to ASMVRPT.

System action: The ASMXRPT run continues.

Programmer response: The default sort sequence is
used. Refer to the parameters option to change the sort
sequence. To suppress this message, supply the default
sort sequence as a parameter.g

ASMXREF User Abends
Table 23. ASMXREF Abend Codes

Code Message

003 ASMXREF is unable to open the SYSIN file

004 ASMXREF is unable to open the SYSPRINT file

005 A 005 abend can occur either from the ASMXREF message processing module or XRFMSG when a
virtual storage request failed

006 ASMXREF encountered an unrecognized symbol when it scanned an input module

009 ASMXREF encountered a logical statement whose length is outside the acceptable range

010 Buffer record length is less than the left source margin

Table 24. ASMXREP Abend Codes

Code Message

016 ASMZ028T OPEN failed for SYSPRINT

018 ASMZ031T Memory allocation failed in ASMTWURS

ASMZ178T • ASMZ185I

168 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Table 24. ASMXREP Abend Codes (continued)

Code Message

020 ASMZ032T PUT failed for record in SYSINOU

022 ASMZ030T OPEN failed for SYSINOU

024 ASMZ082T Failure to release storage in Module: ASMZXREF

Chapter 5. Using the Cross-Reference Facility 169

||

170 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Chapter 6. Using Enhanced SuperC

The comparison and search facility (named Enhanced SuperC and referred to in the rest of this chapter as
SuperC) is a versatile program that can be used to compare two sets of data (using the SuperC
Comparison) or to search a specific set of data for a nominated search string (using the SuperC Search).

SuperC is designed to run on the following platforms:
v z/OS (batch)
v z/VM (CMS menu or CMS command line interface)
v z/VSE (batch)

At a minimum, the SuperC Comparison requires only the names of the two items to be compared. The
SuperC Search requires only the name of the item to be searched and the search string.

You can tailor the comparison or search using process options and process statements. Process options are
single keywords that you enter on the PARM parameter (z/OS and z/VSE), a menu (CMS), or the
command line (CMS). Process statements consist of a keyword and one or more operands; you pass these
to SuperC in an input file.

For example, you can use the process option ANYC (“Any Case”) so that SuperC treats uppercase and
lowercase characters as the same. (Thus, “d” and “D” are considered to be the same.) You can use the
process statement DPLINE (“Do not Process Lines”) to ignore the lines (being compared or searched) that
contain a specified character string. For example, DPLINE ’$’ causes all lines that contain the
single-character string “$” to be ignored.

The SuperC comparison
Using the SuperC Comparison, you can:
v Specify at what “level” the comparison is to be performed (file, line, word, or byte)
v Exclude certain data from the comparison
v Restrict the comparison to certain types of data
v Handle various date formats (for example, 2-digit and 4-digit year representations)
v Control the type of listing output produced
v Specify an update file to be produced

SuperC operates independently of any synchronization data, such as column or sequence numbers. It
does not use the common “start at the top then look ahead or look back” method to determine large
sections of matching data. Neither does it sort the data before comparing. SuperC is unique in that,
except for files that are identical, no match determination is made until both files have been completely
read.

SuperC recognizes matching and missing files, lines, words, or bytes (data units) based on data content
only. “Missing” data units are units that are out of sequence, as opposed to units that have been deleted
from a file. It finds all matches, locates the largest set of matching data units, and recursively allows this
comparison set to divide the file into additional partitioned subsections. All new subsections are processed
for corresponding matches. The sub-process ends when no more matches can be found within
corresponding new and old file partitioned subsections. Sections classified as “inserted” or “deleted” are
corresponding areas for which no matches were found.

© Copyright IBM Corp. 1992, 2013 171

Figure 58 demonstrates how SuperC compares two files which have records (“lines”) represented by A, B,
C, The SuperC algorithm attempts to find the best match set from the input records. Notice how the
match set requires consideration of duplicate lines.

Comparison Sequence New File Result Old File
Largest set D E F Matches set D E F
Top set A Matches A
Leftover top set B C Mismatches I
Largest bottom match H A Matches H A
Leftover bottom set A Mismatches B C A

The SuperC search
Using the SuperC Search, you can specify:
v One or more search strings
v Whether multiple search strings are independent of each other or must be present on the same line
v Whether a search string is a word, prefix, or suffix
v The range of columns to be searched
v The number of lines to appear in the output listing before and after each line where a search string is

found

SuperC features for date comparisons
Using SuperC features specifically designed to help you manage dates, you can:
v Specify a 100-year period (or “year window”) so that, for dates that have only a 2-digit year, the

century can be determined. This can be based on either:
– A “fixed” year window (with a fixed starting year), or
– A “sliding” year window (starting at a specified number of years prior to the current year).

New File Old File
┌─────┐ ┌─────┐
│ A │ ──── Matches ──── │ A │
├─────┤ ├─────┤

Inserted │ B │ │ I │ Deleted
├─────┤ ├─────┤

Inserted │ C │ ┌ │ D │ ┐
├─────┤ │ ├─────┤ │ Largest
│ D │ ┐ ┌─ Matches ───┤ │ E │ │ matching
├─────┤ │ │ │ ├─────┤ │ set
│ E │ ├─┘ └ │ F │ ┘
├─────┤ │ ├─────┤
│ F │ ┘ │ B │ Deleted
├─────┤ ├─────┤

Inserted │ A │ │ C │ Deleted
├─────┤ ├─────┤
│ H │ ┐ ┌ │ H │
├─────┤ ├─── Matches ───┤ ├─────┤
│ A │ ┘ └ │ A │
└─────┘ ├─────┤

│ A │ Deleted
└─────┘

Note: The inserted “A” on the lower left cannot connect with the deleted “A” on the bottom right due to the “H”
and “A” barrier.

Figure 58. Illustration of how SuperC compares files

172 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

v Compare 2-digit year values in one file with 4-digit year values in another file.
v Compare compressed year values in one file with uncompressed year values in another file.
v Filter cosmetic differences caused by adding century digits to 2-digit years, so that you can more easily

identify real differences in content.

General applications
SuperC provides many features for general applications and all types of users.

General users can:
v Compare two files that have been reformatted. Reformatted files contain such differences as

indentation level changes, or inserted or deleted spaces.
SuperC detects and classifies reformatted lines as special changes. You can list these lines in the output,
along with the normal insert/delete changes, or eliminate them from the listing. Reducing the number
of flagged lines may help focus on real, rather than cosmetic, changes.

v Determine whether two groups of files have corresponding like-named “components”.
Components absent from one group but present in the other are listed, as is all change activity between
like-named components. The comparison can show changes caused by creating or deleting components
of file groups.

Writers and editors can:
v Detect word changes within documents.

SuperC finds word differences even if the words have been moved to adjacent lines.
v Verify that only designated areas are changed.

SuperC comparison results show all areas affected. Changes made to restricted areas may be invalid.
Unintended changes can therefore be detected so that a complete document need not be checked for
errors again.

v Use SuperC to automatically insert SCRIPT/VS or BookMaster revision codes.
The UPDREV process option can be used with either the WORD or LINE compare type to put either
SCRIPT/VS (.rc) or BookMaster (:rev and :erev) tags before and after the changed lines.

Programmers and systems administrators can:
v Generate management reports that show the quantity and type of changes in program source code.

SuperC can count the changed and unchanged lines of code in an application program. Comparison
results could be used, for example, to summarize the changes between different versions of a program.

v Retain a record of change activity.
SuperC listing files can be collected and retained as a permanent record of the changes made before a
new program is released. Source code differences can help detect regressions or validate the
appropriateness of any code modifications.

v Modify a listing output file, including additional headers or change delimiters.
Some SuperC listings may need to be rewritten before you accept the results. For example, some
installations may require security classifications. Others may require a listing created using the WIDE
process option to have box delimiters surrounding changed sections.

v Compare files across unconnected systems.
SuperC can generate a 32-bit hashsum per file using the FILE compare type. Files compared on an
unconnected processor, using SuperC, should have the same hashsums if they are identical. A FILE
comparison on any file to determine a hashsum can be done by specifying the same file as both new
and old.

v Develop additional uses for update files.

Chapter 6. Using Enhanced SuperC 173

SuperC produces general results with generalized listings. However, your installation may have unique
requirements. There are many specialized update files that you can use to produce listings that match
these requirements. Normal SuperC listings may not fit this type of application, but the update files are
more structured and should be easier to use as data input. See “Update files” on page 278 for
explanations and examples of the update files.

How SuperC and search-for filter input file lines
The SuperC and Search-For utilities apply process options and process statements to the input file or files
in a specific order. Figure 59 shows schematically the effects, in the order that they occur, of the various
“filtering” process options and process statements, on the compare and Search-For input lines. The
options and statements nearer the top affect the input line before options or statements nearer the bottom.

How SuperC corrects false matches
Occasionally, SuperC reports that it has detected a false line or word match and has corrected the results
in the listing and summary report. Any affected matched pair has been reclassified as an insert/delete
pair. Any resulting error might be in the masking of potential matches that are overlooked due to the
early false match coupling. That is, an equivalent yet undiscovered match might be overlooked due to the

Figure 59. Priority for filtering input lines

174 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

premature false matching. The condition should be of minor importance since it happens so rarely and
the masking effect has a low probability of affecting the final results.

An equally important SuperC concern is whether it finds the best match set and whether it finds all
matches. Unfortunately, the match-finding algorithm is not perfect. Ignoring the false match masking
problem, and the many duplicate source lines obscuring the match set possibilities, occasional matches
can be overlooked. SuperC , however, does not fail to correctly classify mismatches and does not
incorrectly classify a mismatch as a match.

Comparison of large files can sometimes lead to false matches. Increasing the WORKSIZE process
statement value can sometimes alleviate the number of false matches reported.

How SuperC partitions and processes large files
In SuperC, there is no limit on the size of files processed in terms of lines, words or bytes. Yet it has an
internal methodology based upon a maximum field size for each work area storage structure. SuperC
performs the overall comparison process by breaking large files into smaller comparison partitions and
combining the intermediate results into one overall result. The process attempts to ensure that the file
partitioning does not appear to be determined after some arbitrary limit is reached. This can affect the
results on either side of the break point.

A partitioning size of 32000 lines/words/bytes is the default. This size can be adjusted by specifying the
WORKSIZE process statement. The compare processes up to this limit and iteratively adjusts the
intermediate ending break point of the pass by an adaptive method. Continuation from the adjusted end
point is the basis for the next pass. That end point might even be adjusted to some previous records that
have already been processed. The objective is to achieve the next best compare set for future unprocessed
records.

The overall process ends when both files reach the End-of-File during a pass. The results from the
intermediate passes are combined into one user end result. Most large compares never appear to have
been partitioned and recombined.

Comparing load modules
SuperC compare of load module data might show unexpected differences. This is because SuperC
compares all the data in the load module as it is found on DASD, and does not attempt to decode which
portions are executable, and which might contain uninitialized storage.

The complex data format on DASD is dependent on the load module data set block size, and defined
storage definitions which are controlled by the linkage editor. The size stored by the linkage editor in the
PDS directory may differ from the DASD data byte count reported by SuperC and Browse depending on
the characteristics of the load module.

If load modules are exact copies of each other, SuperC should find no differences. If load modules have
been link-edited from the same object but with different blocksizes, SuperC will probably report they are
different.

Because of the relative DASD addresses (TTRs) in load modules, the recommended procedure for
comparing load modules which have not been reblocked is to use the AMBLIST utility with LISTLOAD
OUTPUT=MODLIST against both load modules, then use SuperC to compare the two AMBLIST outputs.
There is no easy way to compare load modules with different internal record sizes such as occurs when
COPYMOD or LINKEDIT processes them.

Chapter 6. Using Enhanced SuperC 175

Comparing CSECTs
SuperC compare of PDS Load Module CSECTs (using the LMCSFC Process Option) can return
unexpected differences. SuperC looks at the length of the CSECT from the control record immediately
preceding the CSECT data record in the load module. This physical data length can differ from the
logical CSECT data length in the load module header that the AMBLIST utility uses to report the length
of the CSECT.

SuperC always compares all the physical data in each CSECT. You can use SuperC Byte compare to
examine the CSECT data content in detail.

Note: This option is only valid for PDS load modules.

Invoking the SuperC comparison
The following sections describe how to invoke the SuperC Comparison on each platform (z/OS, CMS,
and z/VSE).

Invoking the comparison on z/OS
On z/OS, you invoke the SuperC Comparison as a batch program. You can use the SuperC Comparison
on z/OS to compare:
v Two sequential data sets
v Two complete partitioned data sets
v Two VSAM data sets
v Members of two partitioned data sets
v Concatenated data sets
v A VSAM data set with a sequential data set

z/OS JCL example
Figure 60 on page 177 shows simplified z/OS JCL to run the SuperC Comparison. This example is
supplied with SuperC in the sample PDS (default is ASM.JMQ415A.SASMSAM2) as member
ASMFMVC1.

Before running this example, edit the lines highlighted by numbers (such as �1�) as described in the
instructions following the example listing.

176 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

�1� Replace PARM=’options’ with a PARM parameter in the following format:

Format of ASMFSUPC PARM parameter for SuperC comparison

�� PARM = '
LINECMP

compare_typeCMP

OVSUML

listing_typeL
'

process_options
��

Note: Each option may be separated by either a space or a comma.

compare_type
The type of comparison you want performed: FILE, LINE, WORD, or BYTE. When specifying
the compare type in the PARM parameter, add the suffix “CMP” (for example, WORD
becomes WORDCMP).

For a description of each compare type, see “Compare type” on page 181.

listing_type
The type of listing you want from the comparison: OVSUM, DELTA, CHNG, LONG, or
NOLIST. When specifying the listing type in the PARM parameter, add the suffix “L” (for
example, CHNG becomes CHNGL).

For a description of each listing type, see “Listing type” on page 181.

process_options
Process options are keywords that direct SuperC how to perform the comparison or format
the listing. Process options can be separated by spaces or commas.

...
/*
/* Run the comparison with these options (see �1� and �6�)
/*
//RUN EXEC PGM=ASMFSUPC,REGION=4M,PARM=’options’ �1�
/*
//STEPLIB DD DSN=#hlq.SASMMOD2,DISP=SHR �2�
/* ─┐
/* Define "new" data set to be compared │
/* │
//NEWDD DD DSN=new_file,DISP=SHR ├─�3�
/* │
/* Define "old" data set to be compared │
/* │
//OLDDD DD DSN=old_file,DISP=SHR ─┘
/*
/* Direct listing data set to SYSOUT
/*
//OUTDD DD SYSOUT=* �4�
/*
/* Define update ("delta") data set
/*
//DELDD DD DSN=update_file �5�
//SYSIN DD *
process_statements �6�...
/*
//

Figure 60. Sample z/OS JCL to run the SuperC comparison

Chapter 6. Using Enhanced SuperC 177

For a description of each process option, see “Process options” on page 216.

For example:
PARM=’LINECMP DPCBCMT DELTAL NOSUMS’

instructs SuperC to:
v Perform a line-by-line comparison. (LINE compare type with “CMP” suffix.)
v Ignore COBOL comment lines. (Process option DPCBCMT ignores lines with an “*” in column

7.)
v Produce a listing showing changes, without an overall summary section. (Process option

NOSUMS eliminates the group and final summary listing from the output listing.)

�2� Replace #hlq with the high level qualifier where SuperC is installed (default load library is
ASM.JMQ415A.SASMMOD2).

�3� Replace new_file and old_file with the items to be compared. These can be:
v Two sequential data sets
v Two complete partitioned data sets
v Two VSAM data sets
v Members of two partitioned data sets
v Concatenated data sets
v A VSAM data set with a sequential data set

Note: The terms “new” and “old” are used only for the sake of identifying the files being
compared, which might or might not be different versions of the same file.

If you specify partitioned data set (PDS) names for new_file and old_file, SuperC compares all
members in the new PDS with any like-named members in the old PDS. Members in either PDS
not having like-named members in the other data set are not compared, but are reported in the
listing data set.

To restrict a comparison of partitioned data sets to selected members only, use the SELECT
process statement. For example, the following process statement:
SELECT NEW1:OLD1,SAME

instructs SuperC to compare only:
v Member NEW1 in the new PDS with member OLD1 in the old PDS
v Member SAME in the new PDS with member SAME in the old PDS

For more information about the SELECT process statement, see “Select PDS members (z/OS)” on
page 249.

�4� The listing data set, listing the results of the comparison. For example listings, see
“Understanding the listings” on page 257.

�5� (Required only if you specify a “UPD...” process option; see �1�.)

The update (or “delta”) data set. Most update data sets are intended to be used as input to other
tools, rather than being “human-readable” reports (such as the listing data set; see �4�). For
instance, if you specify the UPDMVS8 process option, SuperC creates an update data set that you
can use with the IEBUPDTE utility. You can use IEBUPDTE to apply to the old data set any
updates that SuperC found in the new data set.

The file attributes of the update data set depend on the “UPD...” process option you specified.

For more information about producing an update data set, see the process options whose
keywords start with “UPD” on Table 25 on page 217. For a selection of sample update data sets,
see “Update files” on page 278.

�6� Insert any process statements (one statement per line) that you want to use.

178 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

For example, the following process statements:
CMPCOLM 7:72
LSTCOLM 1:72

instruct SuperC to compare only columns 7 to 72 in the new and old data sets (for example, if
you want to compare COBOL source without comparing sequence numbers), but to include in
the listing data set columns 1 to 72 (that is, the listing contains the sequence numbers).

For more information about process statements, see “Process statements” on page 227.

Invoking the comparison on CMS using menu input
You can use the SuperC Comparison on CMS to compare:
v Two files
v Selected files within file groups
v Two complete file groups
v Selected members within MACLIBs or TXTLIBs
v Complete MACLIBs or TXTLIBs

To invoke the SuperC Comparison on CMS, enter:
ASMFSUPC

on the CMS command line.

If you enter ASMFSUPC without any parameters, the Primary Comparison Menu appears (see Figure 61).
This menu allows to specify the files to be compared, and other SuperC options. However, if you enter
ASMFSUPC with the file IDs to be compared and any options you want to use, the comparison starts
immediately without displaying the menu.

This section describes how to use the Primary Comparison Menu. For information about invoking the
SuperC Comparison directly from the command line without using the menu, see “Invoking the
comparison on CMS using command line input” on page 186).

For a straightforward comparison of two files, just enter the names of the two files that you want
compared. One is called the new file, the other the old file. (They are assumed to be different versions of
the same file; the significance of “new” and “old” is normally irrelevant.) Enter the IDs (fn ft fm) of the
two files in the New File ID and Old File ID fields.

HLASM Toolkit Feature SuperC Compare Program V1R6M0 - Primary Menu
COMMAND ==>

Fn Ft Fm (MACLIB/TXTLIB Files Only)
New File ID ==> Member ==>
Old File ID ==> Member ==>

Optional Section
Selection List ==> NO (NO / *)

Compare Type ==> LINE (FILE/ LINE /WORD/BYTE)
Listing Type ==> DELTA (OVSUM/ DELTA /CHNG/LONG/NOLIST
Listing File ID ==> SuperC LIST A (file-ID/ newfn SuperC A)

Process Options ==>
==>

Process Stmts ID ==> (file-ID)

Update File ID ==>
Display Output ==> YES (YES/NO/COND/UPD)
Auto Display Pgm ==> XEDIT (BROWSE/XEDIT/EPDF/etc.)

1=Help 3/4=Quit 5=Proc Stmts 6=SrchFor 8=Proc Opts 9=Print ENTER/10=Exec

Figure 61. SuperC primary comparison menu

Chapter 6. Using Enhanced SuperC 179

For example, if you want to compare the file NEW TEST1 A with the file OLD TEST1 A, enter the two
file names as follows:

New File ID ==> new test1 a
Old File ID ==> old test1 a

and press Enter.

Here is more information about the other input fields on the SuperC Primary Comparison Menu. Default
field values are underlined.

COMMAND
Use this field to issue CP and CMS commands, such as FILELIST, ERASE, or RDRLIST.

New file ID and old file ID
The names of the two files to be compared. SuperC supports the CMS convention of including wildcard
characters (“*”) and equal signs (“=”) as part of the input file ID.

This example compares NEW TEST1 A with OLD TEST1 A:
New File ID ==> new test1 a
Old File ID ==> old = =

Other examples of file name usage are:

File ID Specified Meaning
new test1 a Single CMS file
new test* a File group (all with a file type starting with “TEST”)
new maclib The entire macro library, NEW

Notes:

1. If a process statements file is specified (see “Process statements ID” on page 184) and it contains a
SELECTF process statement, the New File ID and Old File ID fields are ignored.

2. A MACLIB/TXTLIB with a file name containing an “*”(for example, ABC* MACLIB A or * TXTLIB
C) is not processed as individual MACLIB/TXTLIBs with members. There is no method for specifying
the“concatenation” of more than one MACLIB/TXTLIB.

3. The percent wildcard character (“%”) is not supported by SuperC.
4. SuperC allows the same file ID to be entered in both the New File ID and Old File ID fields. You can

use SuperC in this way to obtain:
v Various file statistics (at the FILE, LINE, WORD, or BYTE level)
v A file hex dump listing (using a BYTE comparison with a LONG listing)
v A comparison of different columns or rows within the same file.

Member
The name of the member, within either a macro library (MACLIB) or text library (TXTLIB), to be
compared. (This field is only used when the file specified in New File ID refers to a macro or text
library.) If left blank, all members within the specified library are selected for the comparison.

File ID Specified Member Meaning
new maclib c xyz XYZ member in NEW MACLIB C.
new maclib c * All members in NEW MACLIB C. (Selection List must = NO)

Selection list
Indicates if the Selection List facility is to be used. Valid values are:

NO Selection list facility not required.

180 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

* Selection list facility required.

Note: The Selection List facility is only applicable when an “*” (asterisk) is contained within either the
New File ID or the Old File ID. (In the case of a macro or text library, an “*” must be contained within
the specified Member name.)

Enter an “*” in the Selection List field to see a list of files from which you can select the ones that you
want.

The following examples explain the files that are listed for selection according to the file ID specified:

File ID
Specified

Member Files Listed for Selection

new test1 * All files with the file name “NEW” and the file type “TEST1”
old test* a All files with the file name “OLD” and a file type beginning with “TEST” and file

mode “A”
new txtlib a * All members within the text library NEW TXTLIB A
new maclib a abc* All members within the macro library NEW MACLIB A whose name begins with

“ABC”

For information about using the selection list, see “CMS file selection list” on page 290.

Compare type
The type of comparison to be performed. Valid values are:

FILE Compares source file for differences, but does not show what the differences are. This is the
simplest and fastest method, with the least amount of processing. For this compare type, SuperC
reports only summary information.

LINE Compares source files for line differences. It is the most commonly used compare type (and the
default). The output report lists inserted and deleted lines; changed lines are treated as a deletion
and insertion. Line lengths may be of any size.

Unequal record lengths are padded with spaces. There are no other padding options. A compare
type of LINE informs you whether the data content is the same or not. It is common to compare
lines from two files, ignoring the sequence columns in 73-80. However, this may yield results that
differ from when a compare type of FILE is used (see “Reasons for differing comparison results”
on page 297).

WORD
Breaks the files into lines and then into individual words. The results are like those for the LINE
compare type except words on adjacent lines can be matched.

Word delimiters are normally spaces and end-of-line. The XWDCMP process option lets you use
the standard set of non-alphanumeric characters in addition to spaces as delimiters.

BYTE Compares source files for byte differences. The output listing files consists of a hexadecimal
printout with character equivalents listed on the right. The summary listing at the end details the
number of bytes processed in the comparison.

To obtain a complete hex dump of a file, compare the file against itself, specifying a BYTE
compare type with a LONG listing type.

Listing type
The type of listing output required.

(For a detailed explanation of the format and content of the various listings produced by SuperC, see
“Understanding the listings” on page 257.)

Chapter 6. Using Enhanced SuperC 181

Valid values are:

OVSUM
Lists only an overall summary of the results of the comparison without showing the differences
themselves. A group comparison generates an individual summary line for each file (or member) in
the group. For more information, see “Overall summary section” on page 263.

DELTA
Lists only the differences between the source files or members being compared, followed by overall
summary results. Differences are flagged in the listing output section of the SuperC listing. For more
information, see “Listing output section” on page 259.

For example, a DELTA listing of a LINE comparison shows only the individual lines in each file or
member that are different.

CHNG
Contains the same information as the DELTA listing, plus up to 1000 matching lines (default is 10)
before and after the differences. This listing shows differences within the context of the surrounding
matching data. To specify the number of lines shown before and after each difference, use the
CHNGV process statement. For more information, see “Change listing value” on page 229.

LONG
Lists the entire file, indicating where the differences exist, followed by a summary section.

NOLIST
Produces no listing output. One of these messages is displayed on the menu: Differences were
found. or No differences were found.

Listing file ID
The name of the listing file generated as a result of the comparison. (A listing file is always generated
unless the NOLIST listing type is specified.)

You can:
v Leave this field blank (in which case SuperC allocates a default name for the listing file)
v Specify a full file ID to be used for the listing file
v Use a combination of “*” and “=” symbols (which results in the listing file ID being a combination of

the fn ft fm specified in the New File ID and the details you enter for the Listing File ID)

Here are some examples:

New file ID Listing file ID File ID Used
new test a new superc a
new test a myname mytype a myname mytype a
* test a $ superc a
new test a = listing a new listing a
new* test a * listing a new$ listing a

Process options
You can specify the process options that you want (if any) by one of:
v Entering them directly using one (or both) of the process option lines on the Primary Comparison

Menu.
v Selecting them from the Process Options Selection Menu (PF8).

For a full list and description of process options, see “Process options” on page 216.

182 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Entering process options directly: Type in each process option keyword on an entry line (each keyword
must be separated by a space). Each line holds up to 51 characters (including spaces).

Figure 62 shows two process options entered directly on the Process Options line:
LOCS (“List Only Changed Entries in Summary”)
ANYC (“Any Case”)

Selecting process options from a menu: You can also specify process options by selecting them from the
Process Options Selection Menu. The menu shows the process options that are valid for the specified
comparison type. To display the menu, press PF8.

For instance, if you are using a LINE compare type, pressing PF8 displays all the process options for a
LINE comparison (see Figure 63).

To select a process option, enter an “S” next to it.

Process options which have been selected previously appear with an “S” alongside them (as for LOCS
and ANYC in Figure 63).

When you no longer need a process option, clear the “S” from the Process Option Selection Menu or
delete the option keyword from the Process Option field on the Primary Compare Menu.

HLASM Toolkit Feature SuperC Compare Program V1R6M0 - Primary Menu
COMMAND ==>

Fn Ft Fm (MACLIB/TXTLIB Files Only)

...

Process Options ==> locs anyc
==>

...

1=Help 3/4=Quit 5=Proc Stmts 6=SrchFor 8=Proc Opts 9=Print ENTER/1

Figure 62. SuperC primary comparison menu with process options entered directly

HLASM Toolkit Feature SuperC Compare Program - Line-Compare Options (1 of 4)
COMMAND ==>
Select option(s) from the following list or "blank" to remove.

Sel General Process Options
SEQ - Ignore sequence columns 73-80 on F 80 input source files.
NOSEQ - Process columns 73-80 as data on F 80 input source files.
COBOL - Ignore sequence columns 1-6 on F 80 input source files.

S LOCS - List only changed and non-paired entries in group summary list.
REFMOVR - Reformat override. Don’t flag reformatted lines in listing.
DLREFM - Don’t list reformatted old file lines. Only new file reformats.

S ANYC - Process text lines as upper case.

Listing Process Options
WIDE - Up to 80 columns side-by-side. Line length = 202/203.
NARROW - Up to 55 columns side-by-side. Line length = 132/133.
LONGLN - Lists up to 176 columns. Line length = 202/203.
GWCBL - Generate Word/Line Change Bar Listing.
NOPRTCC - No print control and page separators.
ERASRC0 - Erase listing on compare return code = 0.

(cont’d)

PF1=Help PF3=Menu PF7=Prev Page PF8=Next Page

Figure 63. Example of the SuperC process options selection menu (LINE comparison)

Chapter 6. Using Enhanced SuperC 183

Process statements ID
The name of the file (if any) containing process statements.

Process statements (which are like process options but require one or more additional items of
information to be specified) are always passed to SuperC in a file.

For a full list and description of process statements, see “Process statements” on page 227.

You can either enter the name of an existing file that contains process statements, or press PF5 to create a
new file and specify the process statements.

Pressing PF5 displays the Process Statements Entry Menu (see Figure 64) showing examples of some of
the process statements available and allows you to enter (one at a time) the process statements that you
want.

When you exit from the Process Statements Entry Menu, SuperC automatically generates a file (called
SUPERC SYSIN A) containing each of the process statements you specified. (SUPERC SYSIN A is entered
against Process Stmts ID on the Primary Comparison Menu.)

Note: When you press PF5, SuperC erases any existing SUPERC SYSIN A file before creating the new
file.

Update file ID
The name of the update file generated (if applicable) as a result of the comparison. SuperC generates an
update file if you specify one of the “UPD...” process options.

You can:
v Leave this field blank (in which case SuperC allocates a default name for the update file)
v Specify a full file ID to be used for the update file
v Use a combination of “*” and “=” symbols (which results in the update file ID being a combination of

the file name specified in the New File ID and the details you enter for the Update File ID

Here are some examples:

New File ID Update File ID File ID Used
new test a new update a
new test a myname mytype a myname mytype a
* test a $ update a
new test a = updseq a new updseq a
new* test a * updseq a new$ updseq a

HLASM Toolkit Feature SuperC Compare Program - Process Statements (1 of 1)
Process Statements ------ SuperC Compare Program ------------------

Enter Process Statements for Statements File:
==>

Examples Explanation

CMPCOLM 5:60 75:90 Compare using two column compare ranges
LSTCOLM 25:90 List columns 25:90 from input files

...

PF1=Help PF3=Menu PF5=Menu PF6=Cancel ENTER=Save Line

Figure 64. Example of the SuperC process statements entry menu (Comparison)

184 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Note: For further information, see “Update files” on page 278.

Display output
This field determines if the results of the comparison are to be displayed. Valid entries are:

YES Display the output listing using the editor specified in the Auto Display Pgm field.

NO Do not display any output.

COND
Display the output listing using the editor specified in the Auto Display Pgm field if the return
code is not 0 (that is, differences were found.)

UPD Display the update listing using the editor specified in the Auto Display Pgm field. UPD is only
valid when an “UPD...” process option is specified in the Process Options field.

(space)
Do not display any input unless the Auto Display Pgm field (see following description) is not
space, in which case the Display Output field defaults to YES.

Auto display pgm
This field is used with the Display Output option. It allows you to use the editor or browse program of
your choice.

Specify the name of an editor or browse program to inspect the output listing:

program name
The name of a valid editor or browse program to be invoked to display the results of the
comparison. (For example, XEDIT, EPDF, BROWSE)

(space)
Defaults to XEDIT if the Display Output option is YES, COND, or UPD.

Primary comparison menu PF key definitions
PF1 Help. Displays the Help Table of Contents menu.

PF3 Quit. Leaves the current SuperC environment. SuperC terminates.

PF4 Quit. Same as PF3 from this menu. SuperC terminates.

PF5 Proc Stmts (Process Statements). Displays the Process Statements Entry Menu. This menu contains
examples of the more widely used process statements. It also has a field that allows you to input
one process statement at a time into the SUPERC SYSIN A file.

Note: When you press PF5, SuperC erases any existing SUPERC SYSIN A file before creating the
new file.

PF6 Displays the Primary Search Menu.

PF8 Proc Opts (Process Options). Displays the Process Options Selection Menu. The actual menu that
is displayed depends on the contents of the compare type field. For example, in Figure 61 on
page 179, pressing PF8 displays the first of three LINE process option menus.

PF9 Print. Builds a command to schedule the printing of the listing file. This command is then
displayed in the command line area.

Note: If SuperC finds differences in the comparison process and you have used the WIDE
process option (see “Process options” on page 216), the command displayed in the command line
area causes the Wide Print Menu to be displayed (see Figure 65 on page 186) after you press
Enter.

PF10 Execute and Quit. Verifies user-input fields, invokes SuperC, and quits.

Chapter 6. Using Enhanced SuperC 185

ENTER
Execute. Verifies user-input fields and invokes SuperC. Control returns to the Primary
Comparison Menu after the comparison has completed.

Printing the wide listing
If you used the WIDE process option and SuperC finds differences in the comparison, pressing the PF9
key from the Primary Comparison Menu, followed by Enter, displays the Wide Print Menu (see
Figure 65).

This menu displays the listing file ID and the printer information that you last specified (or the printer
information in SUPERC NAMES *) allowing you to change these details if necessary.

Note: For a description of the SUPERC NAMES * file, see “CMS files used by SuperC” on page 297.

For an example of a side-by-side WIDE listing, see Figure 90 on page 267.

Invoking the comparison on CMS using command line input
You can use the SuperC Comparison on CMS to compare:
v Two files
v Selected files within file groups
v Two complete file groups
v Selected members within MACLIBs or TXTLIBs
v Complete MACLIBs or TXTLIBs

This section describes how to invoke the SuperC Comparison directly from the command line, without
using the Primary Comparison Menu. For information about using this menu, see “Invoking the
comparison on CMS using menu input” on page 179.

To invoke the SuperC Comparison from the CMS command line, enter ASMFSUPC with the file IDs to be
compared and any options you want to use. The comparison starts immediately without displaying the
Primary Comparison Menu.

The general format is:

HLASM Toolkit Feature SuperC Compare Program - Wide Print Menu 07/11/2008
COMMAND ==>

Wide Print Listing of file: MYTEST LISTING A1

Enter/Verify 3800 Printer Information (Defaults from SuperC Names file):
Printer Model ==> 3800

Spool ==> DIST 400-9999 CL 5 GT 15 FORM 3860 FCB FCB6
Tag ==> RALVMX SYSTEM 20

For NOPRTCC Wide listings:
Lines per Page ==> 0 (0-99, default=0 -- no page ejects)

New printer information is stored in LASTING GLOBALV if ENTER is pressed.

PF1=Help PF3/PF6=Primary Menu PF4=Quit ENTER=Exec

Figure 65. Example of the SuperC wide print menu

186 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

�� ASMFSUPC

�

new_file_ID old_file_ID

(option

��

new_file_ID
The name of the new file (or member)

old_file_ID
The name of the old file (or member)

option Each type of option is described in the following pages.

For example, to compare file TEST1 NEW A with file TEST1 OLD A (without specifying any options),
enter:
ASMFSUPC TEST1 NEW A TEST1 OLD A

To compare file TEST1 NEW A with file TEST1 OLD A (with a listing type of DELTA and a process
option of WIDE), enter:
ASMFSUPC TEST1 NEW A TEST1 OLD A (DELTA WIDE

Types of options (additional)
You can specify any of the following options in the CMS command line or in the Options List file):

Member Names
This option specifies the names of the members within a library.

�� NMEM (new_member_name) OMEM (old_member_name) ��

For example:
ASMFSUPC MACLIB NEW A MACLIB OLD A (NMEM(ABC) OMEM(DEF)

compares the member ABC in MACLIB NEW A with the member DEF in MACLIB OLD A.

Note: Member names can only be used as options when the new_file_ID and old_file_ID specified
refer to either macro or text libraries.

Compare Type
This option specifies the type of comparison to be performed.

Can be one of the following keywords:
FILE File comparison
LINE Line comparison
WORD

Word comparison
BYTE Byte comparison

For further descriptions of each compare type, see page “Compare type” on page 181.

Listing Type
This option specifies the type of listing output required.

Can be one of the following keywords:

Chapter 6. Using Enhanced SuperC 187

OVSUM
Overall summary

DELTA
Differences only

CHNG
Lines before/after differences

LONG
Entire file

NOLIST
No listing output

For further descriptions of each listing type, see page “Listing type” on page 181.

Listing File
This option specifies the alternative name to be assigned to the listing file generated as a result of
the comparison process.

�� LISTING (listing_file_ID) ��

For example:
ASMFSUPC TEST1 NEW A TEST1 OLD A (LISTING(TSTLIST RESULTS A)

creates a listing file named TSTLIST RESULTS A.

Notes:

1. If you do not use the LISTING option, the listing file is generated with a default ID consisting
of:
fn File name of the new file
ft SUPERC
fm A

2. A listing file is always generated unless the NOLIST listing type is specified.

Display Output
This option specifies if the results of the comparison are to be displayed.

�� DSPL
(NO)

(YES)
(COND)
(UPD)

��

NO Do not display output

YES
Display output

COND
Display output if differences found

UPD
Display differences if update option used

188 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

For example:
ASMFSUPC TEST1 NEW A TEST1 OLD A (DSPL(YES)

causes the comparison results to be displayed.

Note: If you specify an editor or browse program (see following option), the “Display Output”
option defaults to YES.

For a further description of the Display Output option, see “Display output” on page 185.

Auto Display Program
This option is used with the Display Output option. It allows you to use the editor or browse
program of your choice (if it is supported in your processing environment). The default is XEDIT.

Examples:
ASMFSUPC TEST1 NEW A TEST1 OLD A (EPDF

ASMFSUPC TEST1 NEW A TEST1 OLD A (XEDIT

ASMFSUPC TEST1 NEW A TEST1 OLD A (BROWSE

These examples specify editors EPDF and XEDIT, and browse program BROWSE.

For a further description of the Auto Display Program, see “Auto display pgm” on page 185.

Update File ID
This option specifies the alternative name to be assigned to the update file generated (if
applicable) as a result of the comparison process.

�� UPD (update_file_ID) ��

For example:
ASMFSUPC TEST1 NEW A TEST1 OLD A (UPD(TSTUPD DETAILS A)

creates an update file named TSTUPD DETAILS A.

Notes:

1. An update file is only generated if one of the “UPD...” process options was specified. For
further details, see “Process options” on page 216.

2. If you do not use the UPD option, the update file is generated with a default ID consisting of:
fn File name of the new file
ft UPDATE
fm A

Process Options
This option specifies the process options to be used in the comparison process.

These can be one or more of the process option keywords which are valid for the compare type
used. For details of these, see “Process options” on page 216.

For example:
ASMFSUPC TEST1 NEW A TEST1 OLD A (ANYC

specifies the process option ANYC with the result that the case of characters in the two input files
is ignored when performing the comparison process.

Chapter 6. Using Enhanced SuperC 189

Option Directives
You can use any of the following option directive keywords:
ERASRC0

Erase listing file if no differences
MENU

Display Primary Comparison Menu
NOIMSG

No information messages
NONAMES

No SUPERC NAMES * file
NOOLF

No Options List file
PRINT

Print results

For example:
ASMFSUPC TEST1 NEW A TEST1 OLD A (NOOLF

specifies that any options contained in the Options List file are not to be used in the comparison
process.

For further descriptions of each Option Directive, see “CMS command line option directives” on
page 255.

Process Statement Directives
The following directives are transformed into process statements. They can be one of the
following keywords:
CC Compare columns
LC List columns
LT Line count
RR Revision code reference

For example:
ASMFSUPC TEST1 NEW A TEST1 OLD A (LC(7:14)

selects columns 7 to 14 to be listed in the output.

For further descriptions of each Process Statement Directive, see “CMS command line statement
option directives” on page 256.

Process Statement ID
This option specifies how process statements are to be supplied to the SuperC Comparison.

One of two keywords can be used:

CNTL Use the CNTL keyword if you want to use an existing file that contains the process
statements you require.

�� CNTL (process_statement_file_ID) ��

For example:
ASMFSUPC TEST1 NEW A TEST1 OLD A (CNTL(TSTPRO OPTS A)

specifies that the process statements in file TSTPRO OPTS A are to be used.

PROMPT
PROMPT indicates to SuperC that the file SUPERC SYSIN A is to be used to supply the
process statements and causes the Process Statements Entry Menu to be displayed. This

190 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

menu contains examples of the more widely used process statements. It also has a field
that allows you to input one process statement at a time into the SUPERC SYSIN A file.

For example:
ASMFSUPC TEST1 NEW A TEST1 OLD A (PROMPT

causes the Process Statements Entry Menu to be displayed.

Note: If SUPERC SYSIN A already exists, its contents are erased before creating the new
file.

Options List File
You can use the Options List file to hold a set of default options (to save you entering them each
time on the CMS command line). Any of the options described in this section can be placed in
the Option List file. They take effect unless overridden by options in the command line.

If you do not specify a name for the Options List file, SuperC looks for a file with the default
name SUPERC OLIST A and, if found, uses the options contained in that file for the comparison
process.

However, you can nominate an alternative Options List file by using the keyword OLF. OLF
allows you to specify either a fully qualified file ID (fn ft fm) or a partially qualified file ID for the
Options List file that you want SuperC to use (see “Default Naming Convention for Options List
File”).

Note: SuperC uses options contained in an OLF-specified Options List file before those in
SUPERC OLIST A (see “Command line priority and overriding” on page 192).

�� OLF (options_list_file_ID) ��

For example:
ASMFSUPC TEST1 NEW A (SRCH(’ABC’) OLF(MYOPTS FILE A)

specifies that the options in file MYOPTS FILE A are to be used.

Note: Not all options in the Options List file can be overridden since there is no way to negate
them. Take care when considering which options to include in the file when using OLF.

To examine this further, let's look at an example of an Options List file containing the following:
DELTA XEDIT CNTL(MYFILE STMTS A)

If the Options List file that you nominate in the CMS command line (by using the OLF keyword)
contains the above options, you can:
v Override the DELTA option by specifying any of the other listing types (for example, NOLIST)

in the command line.
v Nullify the XEDIT Auto Display Program by including the Display Output option DSPL(NO)

in the command line.

but you cannot override the Process Statements ID keyword CNTL (and therefore the process
statements contained in the file MYFILE STMTS A take effect).

Default Naming Convention for Options List File: The command line uses the following defaults
in the naming of the Options List file:

Chapter 6. Using Enhanced SuperC 191

Command Line OLF ID Used
ASMFSUPC...(... SUPERC OLIST A
ASMFSUPC...(NOOLF... (none)
ASMFSUPC...(OLF(TST1)... TST1 OLIST A
ASMFSUPC...(OLF(TST1 OPTS)... TST1 OPTS A
ASMFSUPC...(OLF(TST1 OPTS A)... TST1 OPTS A

Command line priority and overriding
The following priority sequence is used unless either the NOOLF or NONAMES option is specified:

First priority
Options from the command line

Second priority
Options from the user-specified Options List file

Third priority
Options from SUPERC OLIST A

Fourth priority
Options from the LINE_DEF tag from the SUPERC NAMES file

Note: If you specify an option in the command line that conflicts with an option in the Options List file,
the option in the Options List file takes precedence. (SuperC lists the conflicting option in the output
listing.)

Compares from FILELIST
You can invoke SuperC from FILELIST. Specify the new and old files followed by a “(” and the SuperC
options.

The new file can be selected from the list of files by using a “/” in the prefix area)

The old file can be named in full (fn ft fm) or, if appropriate, an “=” can be used to replicate that part of
the new file identifier.

An example of SuperC being invoked from the FILELIST is shown in Figure 66. In this case, the two files
are compared with:
v A compare type of LINE (the default)
v XEDIT being invoked to display the results of the comparison.
v A listing type of OVSUM
v No options to be used from an Options List file

JLEVERI FILELIST A0 V 108 Trunc=108 Size=657 Line=1 Col=1 Alt=9
Cmd Filename Filetype Fm Format Lrecl Records Blocks Date Time

NEW3 TESTCASE C1 F 80 10 1 06/11/04 17.48.03
NEW53 TESTCASE C1 V 125 2958 30 06/11/04 17.48.03
NEW60 TESTCASE C1 V 100 64 1 06/11/04 17.48.03
NEW59 TESTCASE C1 V 74 75 1 06/11/04 17.48.03

asmfsupc / old testcase c1 (xedit ovsum noolf 75 1 06/11/04 17.48.03
NEW56 TESTCASE C1 V 71 22 1 06/11/04 17.48.03
NEW13 TESTCASE C1 F 80 15 1 06/11/04 17.48.03

1= Help 2= Refresh 3= Quit 4=Sort(type) 5= Sort(date) 6= Sort(Size)
7= Backward 8= Forward 9= FL /n 10= 11= XEDIT 12= Cursor

Figure 66. Example of invoking SuperC from FILELIST

192 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Invoking the comparison on z/VSE
On z/VSE, you invoke the SuperC Comparison as a batch program. You can use the SuperC Comparison
on z/VSE to compare:
v Two sequential files (VSAM-managed or non-VSAM-managed)
v Two tape files
v One sequential file (VSAM-managed or non-VSAM-managed) and one tape file
v Two complete Librarian sublibraries
v Members of two Librarian sublibraries

The following examples describe the job control statements needed for each of these comparisons. Study
the first example before looking at subsequent examples. Only the first example describes each statement
in detail; subsequent examples describe only the statements specific to that comparison.

z/VSE JCL example 1: Non-VSAM-managed sequential files
Figure 67 on page 194 shows simplified z/VSE JCL for comparing two non-VSAM-managed sequential
files. This example is supplied with SuperC in the Librarian member ASMFVSC1.Z.

Before running this example, edit the lines highlighted by numbers (such as �1�) as described in the
instructions following the example listing.

Chapter 6. Using Enhanced SuperC 193

�1� Replace new_file_name and old_file_name with your choice of DLBL names for the files to be
compared; also insert these DLBL names in the NEWDD and OLDDD process statements (see
�4�). Replace new_file_ID and old_file_ID with the names of the files to be compared. Insert
appropriate extent information and assign logical unit information.

Note: The terms “new” and “old” are used only for the sake of identifying the files being
compared, which might or might not be different versions of the same file.

�2� (Only needed if you specify a “UPD...” process option; see �3�.)

Replace update_file_name with your choice of DLBL name for the update file; also insert this DLBL
name in the UPDDD process statement (see �5�). Replace update_file_ID with the name of the
update file that you want SuperC to create. Insert appropriate extent information and assign
logical unit information.

Most update files are intended to be used as input to other tools, rather than being
“human-readable” reports (such as the listing file; see �3�). For instance, if you specify the

// JOB ASMFVSC1
// LIBDEF *,SEARCH=(PRD2.PROD)
// OPTION NODUMP
/* ─┐
/* Define "new" file │
/* │
// DLBL new_file_name,’new_file_ID’,0,SD │
// EXTENT extent_information │
// ASSGN assign_logical_unit_information ├─ �1�
/* │
/* Define "old" file │
/* │
// DLBL old_file_name,’old_file_ID’,0,SD │
// EXTENT extent_information │
// ASSGN assign_logical_unit_information ─┘
/*
/* Define update file (if required)
/*
// DLBL update_file_name,’update_file_ID’,0,SD ─┐
// EXTENT extent_information ├─ �2�
// ASSGN assign_logical_unit_information ─┘
/*
/* Note: The listing file is output to SYSLST
/* (If the WIDE process option is used, SYSLST must be
/* assigned to a printer capable of handling lines of
/* at least 202 characters.)
/*
/* Run the compare with these options...
/*
// EXEC ASMFSUPC,PARM=’options’ �3�
*
* ...and these process statements
*
NEWDD new_file_name,attributes ─┬─ �4�
OLDDD old_file_name,attributes ─┘
UPDDD update_file_name �5�
other_process_statements �6�...
/*
/&

Figure 67. Sample z/VSE JCL for comparing non-VSAM-managed sequential files

194 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

UPDMVS8 process option, SuperC creates an update file that you can use with z/VSE Librarian.
You can use z/VSE Librarian to apply to the old file any updates that SuperC found in the new
file.

SuperC creates the update file as a non-VSAM-managed sequential file. The file format, record
size and block size depend on the “UPD...” process option you specified.

For more information about producing an update file, see the process options whose keywords
start with “UPD” on Table 25 on page 217. For a selection of sample update files, see “Update
files” on page 278.

�3� Replace PARM=’options’ with a PARM parameter in the following format:

Format of ASMFSUPC PARM parameter for SuperC comparison

�� PARM = '
LINECMP

compare_typeCMP

OVSUML

listing_typeL
'

process_options
��

Note: Each option may be separated by either a space or a comma.

compare_type
The type of comparison you want performed: FILE, LINE, WORD, or BYTE. When specifying
the compare type in the PARM parameter, add the suffix “CMP” (for example, WORD
becomes WORDCMP).

For a description of each compare type, see “Compare type” on page 181.

listing_type
The type of listing you want from the comparison: OVSUM, DELTA, CHNG, LONG, or
NOLIST. When specifying the listing type in the PARM parameter, add the suffix “L” (for
example, CHNG becomes CHNGL).

For a description of each listing type, see “Listing type” on page 181.

process_options
Process options are keywords that direct SuperC how to perform the comparison or format
the listing. Process options can be separated by spaces or commas.

For a description of each process option, see “Process options” on page 216.

For example:
PARM=’LINECMP DPCBCMT DELTAL NOSUMS’

instructs SuperC to:
v Perform a line-by-line comparison. (LINE compare type with “CMP” suffix.)
v Ignore COBOL comment lines. (Process option DPCBCMT ignores lines with an “*” in column

7.)
v Produce a listing showing changes, without an overall summary section. (Process option

NOSUMS eliminates the group and final summary listing from the output listing.)

SuperC outputs the listing file to SYSLST. For a selection of sample listing files, see
“Understanding the listings” on page 257.

�4� NEWDD and OLDDD are process statements that allow you to:

Chapter 6. Using Enhanced SuperC 195

v Use your own choice of DLBL name for the new file and old file. If you do not specify
NEWDD and OLDDD process statements, you must use the DLBL names NEWDD and
OLDDD.

v Specify file attributes for the new and old files. If you do not specify NEWDD and OLDDD
process statements with file attributes, SuperC assumes that the (non-VSAM) new and old files
contain fixed-length unblocked records with a record size and block size of 80.

For more information about the NEWDD and OLDDD process statements, see “DD-VSE
DLBL/TLBL definitions” on page 236.

�5� The UPDDD process statement allows you to use your own choice of DLBL name for the update
file. If you do not specify an UPDDD process statement, you must use the DLBL name UPDDD
for the update file.

�6� Insert any other process statements (one per line) that you want to use.

For example, the following process statements:
CMPCOLM 7:72
LSTCOLM 1:72

instruct SuperC to compare only columns 7 to 72 in the new and old files (say, for comparing
COBOL source without comparing sequence numbers), but to include in the listing file columns 1
to 72 (that is, the listing contains the sequence numbers).

For more information about process statements, see “Process statements” on page 227.

z/VSE JCL example 2: VSAM-managed sequential files
Figure 68 shows simplified z/VSE JCL for comparing two VSAM-managed sequential files. This example
is supplied with SuperC in the Librarian member ASMFVSC2.Z.

The update file, which is created by SuperC only if you specify an “UPD...” process option, is a
non-VSAM-managed sequential file.

If you want to use DLBL names other than NEWDD, OLDDD, and UPDDD, then you must specify
NEWDD, OLDDD, and UPDDD process statements (as shown in Figure 67 on page 194).

If you specify file attributes with the NEWDD and OLDDD process statements, then those file attributes
override the VSAM catalog entries for the new and old files.

z/VSE JCL example 3: VSAM files
Figure 69 on page 197 shows simplified z/VSE JCL for comparing two VSAM files. This example is
supplied with SuperC in the Librarian member ASMFVSC3.Z.

// JOB ASMFVSC2
// LIBDEF *,SEARCH=(PRD2.PROD)
// OPTION NODUMP
// DLBL NEWDD,’new_file_ID’,0,VSAM,DISP=(OLD,KEEP)
// DLBL OLDDD,’old_file_ID’,0,VSAM,DISP=(OLD,KEEP)
// DLBL UPDDD,’update_file_ID’,0,SD
// EXTENT extent_information
// ASSGN assign_logical_unit_information
// EXEC ASMFSUPC,PARM=’options’
process_statements...
/*
/&

Figure 68. Sample z/VSE JCL for comparing VSAM-managed sequential files

196 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

The update file, which is created by SuperC only if you specify an “UPD...” process option, is a
non-VSAM-managed sequential file.

If you want to use DLBL names other than NEWDD, OLDDD, and UPDDD, then you must specify
NEWDD, OLDDD, and UPDDD process statements (as shown in Figure 67 on page 194). In native
VSAM, the file's attributes are taken from the VSAM catalog.

z/VSE JCL example 4: Tape files
Figure 70 shows simplified z/VSE JCL for comparing two labeled tape files. This example is supplied
with SuperC in the Librarian member ASMFVSC4.Z.

Note: For unlabeled tape input, no // TLBL statement is used for the file concerned.

�1� Replace new_file_name with your choice of TLBL name for the new file to be compared; also insert
this TLBL name in the NEWDD process statement (see �5�). Replace new_file_ID with the name of
the new file to be compared.

�2� Insert appropriate physical unit information for the tape unit holding the new tape file.

�3� Replace old_file_name with your choice of TLBL name for the old file to be compared; also insert
this TLBL name in the OLDDD process statement (see �5�). Replace old_file_ID with the name of
the old file to be compared.

// JOB ASMFVSC3
// LIBDEF *,SEARCH=(PRD2.PROD)
// OPTION NODUMP
// DLBL NEWDD,’new_file_ID’,,VSAM,CAT=IJSYSUC
// DLBL OLDDD,’old_file_ID’,,VSAM,CAT=IJSYSUC
// DLBL UPDDD,’update_file_ID’,0,SD
// EXTENT extent_information
// ASSGN assign_logical_unit_information
// EXEC ASMFSUPC,PARM=’options’
process_statements...
/*
/&

Figure 69. Sample z/VSE JCL for comparing VSAM files

// JOB ASMFVSC4
// LIBDEF *,SEARCH=(PRD2.PROD)
// OPTION NODUMP
// TLBL new_file_name,’new_file_ID’ �1�
// ASSGN SYS001,physical_unit_information �2�
// TLBL old_file_name,’old_file_ID’ �3�
// ASSGN SYS002,physical_unit_information �4�
// DLBL update_file_name,’update_file_ID’,0,SD
// EXTENT extent_information
// ASSGN assign_logical_unit_information
// EXEC ASMFSUPC,PARM=’options’
NEWDD new_file_name,attributes ─┬─ �5�
OLDDD old_file_name,attributes ─┘
UPDDD update_file_name
other_process_statements...
/*
/&

Figure 70. Sample z/VSE JCL for comparing labeled tape files

Chapter 6. Using Enhanced SuperC 197

�4� Insert appropriate physical unit information for the tape unit holding the old tape file.

�5� NEWDD and OLDDD are process statements that, for tape input, allow you to:
v Use your own choice of TLBL name for the new file and old file. If you do not specify

NEWDD and OLDDD process statements, you must use the TLBL names NEWDD and
OLDDD.

v Specify file attributes for the new and old files. If you do not specify NEWDD and OLDDD
process statements with file attributes, SuperC assumes that the new and old files are fixed
unblocked with a record size and block size of 80.

For more information about the NEWDD and OLDDD process statements, see “DD-VSE
DLBL/TLBL definitions” on page 236.

z/VSE JCL example 5: Librarian members
Figure 71 shows simplified z/VSE JCL for comparing all like-named members in two Librarian
sublibraries. This example is supplied with SuperC in the Librarian member ASMFVSC5.Z.

Members in either sublibrary not having like-named members in the other sublibrary are not compared,
but are reported in the listing file.

The update file, which is created by SuperC only if you specify an “UPD...” process option, is a
non-VSAM-managed sequential file. If you want to use a DLBL name other than UPDDD for the update
file, specify an UPDDD process statement (as shown in Figure 67 on page 194).

To restrict a comparison of sublibraries to selected members only, use the SELECT process statement. For
example, the following process statement:
SELECT NEW1.SOURCE:OLD1.SOURCE,SAME.C

instructs SuperC to compare only:
v Member NEW1.SOURCE in the new sublibrary with member OLD1.SOURCE in the old sublibrary
v Member SAME.C in the new sublibrary with member SAME.C in the old sublibrary

For more information about the SELECT process statement, see “Select members (z/VSE)” on page 248.

There are two ways to compare only Librarian members:
v Use the SELECT process statement.
v In the NEWDD and OLDDD process statements, specify members rather than entire sublibraries. For

example:
NEWDD LIB.NEWSUB.SAME.C
OLDDD LIB.OLDSUB.SAME.C

// JOB ASMFVSC5
// LIBDEF *,SEARCH=(PRD2.PROD)
// OPTION NODUMP
// DLBL UPDDD,’update_file_ID’,0,SD
// EXTENT extent_information
// ASSGN assign_logical_unit_information
// EXEC ASMFSUPC,PARM=’options’
NEWDD newlib.sublib
OLDDD oldlib.sublib
other_process_statements...
/*
/&

Figure 71. Sample z/VSE JCL for comparing all like-named members in two sublibraries

198 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

To compare groups of members, specify asterisk (*) wildcard character in the member name or type in
the NEWDD and OLDDD process statements. For example:
NEWDD LIB.NEWSUB.NEW*.*
OLDDD LIB.OLDSUB.OLD*.*

Invoking the SuperC search
The SuperC Search runs on z/OS, CMS, and z/VSE. The following sections describe how to invoke the
SuperC Search on each of these platforms.

Invoking the search on z/OS
On z/OS, you invoke the SuperC Search as a batch program. You can use the SuperC Search on z/OS to
search:
v A sequential data set
v One, several, or all the members of a partitioned data set
v A VSAM data set
v A concatenated data set

z/OS JCL example
Figure 72 shows simplified z/OS JCL to run the SuperC Search. This example is supplied with SuperC in
the sample PDS (default is ASM.JMQ415A.SASMSAM2) as member ASMFMVS1.

Before running this example, edit the lines highlighted by numbers (such as �1�) as described in the
instructions following the example listing.

�1� Replace process_options with any process options you want to use to customize how SuperC
performs the search or formats the listing.

For a description of each process option, see “Process options” on page 216.

For example:
PARM=’SRCHCMP DPCBCMT COBOL’

...
/*
/* Run the search with these options (see �1� and �6�)
/*
//RUN EXEC PGM=ASMFSUPC,REGION=4M,PARM=’SRCHCMP process_options’ �1�
/*
//STEPLIB DD DSN=#hlq.SASMMOD2,DISP=SHR �2�
/*
/* Define data set to be searched
/*
//NEWDD DD DSN=search_file,DISP=SHR �3�
/*
/* Direct listing data set to SYSOUT
/*
//OUTDD DD SYSOUT=* �4�
//SYSIN DD *
SRCHFOR ’search_string’ �5�...
other_process_statements �6�...
/*
//

Figure 72. Sample z/OS JCL to run the SuperC search

Chapter 6. Using Enhanced SuperC 199

instructs SuperC to perform a search:
v Ignoring COBOL comment lines. (Process option DPCBCMT ignores lines with an “*” in

column 7.)
v Ignoring columns 1 to 6. (Process option COBOL ignores columns 1 to 6 which are assumed to

be sequence numbers.)

�2� Replace #hlq with the high level qualifier where SuperC is installed (default load library is
ASM.JMQ415A.SASMMOD2).

�3� Replace search_file with the item to be searched. This can be:
v A sequential data set
v A partitioned data set
v A member of a partitioned data set
v A VSAM data set
v A concatenated data set

If you specify a partitioned data set (PDS) name for search file, SuperC searches all members in
the PDS.

To restrict the search of a PDS to selected members only, use the SELECT process statement. For
example, the following process statement:
SELECT TEST1,TEST2

instructs SuperC to search only members TEST1 and TEST2 of the PDS specified by search file.

For more information about the SELECT process statement, see “Select PDS members (z/OS)” on
page 249.

�4� The listing data set, listing the results of the comparison. For example listings, see
“Understanding the listings” on page 257.

�5� Replace search_string with a string that you want to search for. For information about specifying
search strings, see “Search strings in the input file” on page 245.

�6� Insert any other process statements (one per line) that you want to use.

For example, the following process statement:
DPLINE ’ignore this line’

instructs SuperC to exclude from the search any lines containing the specified string (“ignore this
line”).

For more information about process statements, see “Process statements” on page 227.

Invoking the search on CMS using menu input
You can use the SuperC Search on CMS to search:
v A file
v A file group
v A member within a MACLIB or TXTLIB
v Complete MACLIBs or TXTLIBs

This section describes how to use the Primary Search Menu. This menu allows you to specify the file to
be searched, and other SuperC options. For information about invoking the SuperC Search directly from
the command line without using the menu, see “Invoking the search on CMS using command line input”
on page 207.

To display the Primary Search Menu (see Figure 73 on page 201) do one of these:
v Enter

ASMFSUPC SRCH

200 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

on the CMS command line
v Press the PF6 key from the Primary Comparison Menu (see “Invoking the comparison on CMS using

menu input” on page 179).

Suppose you want to search for the uppercase string “ABCD” in the file NEW TEST1 A:
1. Enter the name of the file to be searched in theSearch File ID field:

Search File ID ==> new test1 a

2. Enter the string to be searched for in one of the (three) CAPS fields:
CAPS ==> ABCD

3. Press Enter

The result of the search is then displayed.

Here are descriptions of each input field on the SuperC Primary Search Menu. Default values are
underlined.

COMMAND
This field allows you to issue CP and CMS commands, such as FILELIST, ERASE, or RDRLIST.

Search File ID
This field specifies the name of the file to be searched. In almost all cases, this is a required field.

SuperC allows the CMS convention of including wildcard characters (“*”) and equal signs (“=”)
as part of the file ID. (However, only the “*” wildcard character applies for the Search File ID.)

The following examples show the effect of various entries in the Search File ID field:

File ID Specified Meaning
new test1 a Single CMS file
new test* a File group (all with file name “NEW” and a file type starting with “TEST” and file

mode “A”)
new maclib The entire macro library, NEW

1. If a Process Statements file is specified and it contains any SELECTF process statements, the Search File ID name is ignored.

HLASM Toolkit Feature SuperC Compare Program - Search Menu
COMMAND ==>

Fn Ft Fm (MACLIB/TXTLIB Files Only)
Search File ID ==> Member ==>

Enter Search Strings and Optional operands (WORD/PREFIX/SUFFIX and/or C)
where C denotes Continuation/Additional Match String Requirement

CAPS ==>
CAPS ==>
CAPS ==>
ASIS ==>
ASIS ==>
ASIS ==>

Optional Section
Selection List ==> (NO / *)

Process Options ==>
Listing File ID ==> (srchfn SRCHFOR A /file-id)
Process Stmts ID ==> (file-ID)
Auto Display Pgm ==> (BROWSE/XEDIT/EPDF etc.)
1=Help 3/6=Primary Menu 4=Quit 5=Proc Stmts 8=Proc Opts ENTER/10=Exec

Figure 73. SuperC primary search menu

Chapter 6. Using Enhanced SuperC 201

Note: A macro or text library with a file name containing an “*” (for example, ABC* MACLIB A
or * TXTLIB C) is not processed as individual MACLIB/TXTLIBs with members. There is no
method for specifying the “concatenation” of more than one MACLIB/TXTLIB.

Member
This field specifies the name of the member, within either a macro library (MACLIB) or text
library (TXTLIB),` to be searched. (This field is only used when the file specified in Search File ID
refers to a macro or text library.) If left blank, all members within the specified library are
selected for the search.

File ID Specified Member Meaning
new maclib c xyz XYZ member in NEW MACLIB C.
new maclib c * All members in NEW MACLIB C.

Note: The Selection List field must = NO.

Search String Fields (CAPS, ASIS)
You can specify up to 6 different strings to be searched for in a single search. Strings can be
entered in any of the three CAPS entry fields and in any of the three ASIS entry fields. (The
differences between the CAPS and ASIS entry fields are explained later in this section; see “Using
the CAPS Entry Field”.)

You can specify strings as all uppercase characters, all lowercase characters, or a mixture of both.
The case that you use depends on the entry field used (CAPS or ASIS).

A string may be further qualified as a word, prefix, or suffix, and where it appears on a line:

Qualifier
Meaning

WORD (or W)
String must appear as a separate word, that is, be delimited by spaces or special
characters.

PREFIX (or P)
String must appear as the first part of some other text.

SUFFIX (or S)
String must appear as the last part of some other text.

C Indicates continuation. The string must appear on the same line of input as the string
defined in the previous entry line. (The two strings may appear in the input line in any
order.) Strings without the “C” qualification are independent of previously specified lines.

“C” may have further qualifiers:

+ The string in the “C” entry line must appear after the string specified in the
previous entry line.

+n The string in the “C” entry line must start in the nth position after the string
specified in the previous entry line.

column_range
The string must start within this range of columns on a line.

Format is: start_column:last_start_column

Strings may be entered as a contiguous character string. If spaces are included in the string to be
searched for, the entire search string must be enclosed within apostrophes. If the string to be
searched for contains apostrophes, each embedded apostrophe must be represented by two
apostrophes in the search string.

When a string is qualified, the qualifier starts at the first non-space character after the (possibly
quoted) string.

202 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Hexadecimal strings must be specified using an “X” prefix followed by the hexadecimal string
enclosed in apostrophes. Such strings must contain an even number of valid hexadecimal
characters (0 to 9, A to Z).

Using the CAPS Entry Field: Entering a string in one of the CAPS fields makes SuperC search
for occurrences of the specified string in uppercase only. For example, if you enter the character
string “abcd” in one of the CAPS fields, each occurrence of the string “ABCD” is searched for,
but strings such as “aBcD” or “abcd” or “ABCd” are not sought.

The contents of each CAPS field is raised to uppercase after it is entered on the menu line.

Each of the following examples causes a search for all occurrences of the prefix “WXYZ”:
CAPS ==> WXYZ prefix
CAPS ==> wxyz prefix
CAPS ==> wXyZ prefix

Note: If you use the Process Option ANYC (Any Case) with the CAPS entry, then the string
specified is searched for regardless of case.

Using the ASIS Entry Field: Entering a string in one of the ASIS fields makes SuperC search for
occurrences of the specified string exactly as specified.

For example, if you enter the character string “abcd” in one of the ASIS fields, each occurrence of
the string “abcd” is searched for, but strings such as “aBcD” or “ABCD” or “ABCd” are not
sought.

The following example causes a search for all occurrences of the prefix “wXyZ”:
ASIS ==> wXyZ prefix

Examples of Search Strings:

Search String Specified Searches For

CAPS ==> ABC
CAPS ==> efg

Lines containing the string “ABC” or the string “EFG”

CAPS ==> ABC WORD
CAPS ==> EFG C

Strings “ABC” and “EFG”on the same line; “ABC” must be a complete word

ASIS ==> AbcD PREFIX All occurrences of the prefix “AbcD”

CAPS ==> ’AB C’’D’ The string “AB C'D”

CAPS ==> X’004CFF’ The hexadecimal string X'004CFF'

CAPS ==> ABC W 5:60
CAPS ==> EFG W C +
CAPS ==> HIJ C +5

The string “ABC” starting within columns 5 to 60 with the string “EFG” following
somewhere in the same line and the string “HIJ” starting in the 5th position after
“EFG”

Note: You can also specify search strings using any number of SRCHFOR and SRCHFORC
process statements in a process statement file (see “Process Statements ID”). These search strings
are used in addition to any search strings you specify in the menu.

Selection List
This field indicates if the Selection List facility is to be used. Valid values are:

NO Selection list facility not required.

* Selection list facility required.

Note: The Selection List facility is only applicable when an “*” (asterisk) is contained within the
Search File ID. (In the case of a macro or text file, an “*” must be contained within the specified
Member name.)

Enter an “*” in the Selection List field to see a list of files from which to select the ones that you
want.

Chapter 6. Using Enhanced SuperC 203

The following examples illustrate the files that are listed for selection according to the file ID
specified:

File ID Specified Member Files Listed for Selection
new test1 * All files with the file name “NEW” and the file type “TEST1”
old test* a All files with the file name “OLD” and a file type beginning with “TEST”

and file mode “A”
new txtlib a * All members within the text library NEW TXTLIB A
new maclib a abc* All members within the macro library NEW MACLIB A whose name

begins with “ABC”

For details about using the selection list, see “CMS file selection list” on page 290 for using the
selection list.

Process Options
You can specify the process options that you want (if any) by doing one of these:
v Entering them directly in the process option line on the Primary Search Menu.
v Selecting them from the Process Options Selection Menu (PF8).

For a full list and description of process options, see “Process options” on page 216.

Entering Process Options Directly: If you choose to enter the process options directly, type in
each process option keyword on the entry line (each keyword must be separated by a space). Up
to 51 characters (including spaces) can be entered.

Figure 74 shows two process options entered directly on the Process Options line:
ANYC (“Any Case”)
NOSUMS (“No Summary Section”)

Selecting Process Options from the Menu: The second way to specify process options is to select
them from the Process Options Selection Menu. This menu shows the process options that are
valid for a search. To display this menu, press PF8 (see Figure 75 on page 205).

HLASM Toolkit Feature SuperC Compare Program - Search Menu
COMMAND ==>

Fn Ft Fm (MACLIB/TXTLIB Files Only)

...

Process Options ==> anyc nosums

...
1=Help 3/6=Primary Menu 4=Quit 5=Proc Stmts 8=Proc Opts ENTER/1

Figure 74. SuperC primary search menu with process options entered directly

204 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

To select a process option, enter an “S” next to it.

Process options which have been selected previously appear with an “S” alongside them (as for
ANYC and NOSUMS in Figure 75).

When you no longer require a process option, you can either clear the “S” from the Process
Options Selection Menu or delete the option keyword from the Process Option field on the
Primary Search Menu.

Listing File ID
This field specifies the name of the listing file generated as a result of the search. (The SuperC
Search always generates a listing file.)

You can:
v Leave this field blank (in which case SuperC allocates a default name for the listing file)
v Specify a full file ID to be used for the listing file
v Use “*” and “=” symbols (which results in the listing file ID being a combination of the fn ft fm

specified in the Search File ID and the details you enter for the Listing File ID)

This is best illustrated by some examples:

Search File ID Listing File ID File ID Used
new test a new srchfor a
new test a myname mytype a myname mytype a
* test a $ srchfor a
new test a = listing a new listing a
new* test a * listing a new$ listing a

Process Statements ID
This field specifies the name of the file (if any) containing the process statements to be used in
the search.

Process statements (which are like process options but require one or more additional items of
information to be specified) are always passed to SuperC in a file.

For a full list and description of process statements, see “Process statements” on page 227.

HLASM Toolkit Feature SuperC Compare Program - Search Options 1 of 1)
Search Options -------- SuperC Compare Program ------------------ (1 of 1)
COMMAND ==>
Select option(s) from the following list or "blank" to remove.

/*GE Select option(s) from the following list or "blank" to remove.

Sel Search Process Options
SEQ - Ignore sequence columns 73-80 on F 80 input source files, or
NOSEQ - Process columns 73-80 as data on F 80 input source files, or
COBOL - Ignore sequence columns 1-6 on F 80 input source files.

S ANYC - Process text lines as upper case.
IDPFX - List filename/member as prefix to each search line found.
XREF - Cross references lines found for each search string.
LPSF - List search and up to six preceding and following lines, or
LMTO - List group totals only, or
LNFMTO - List members/files where no lines were found, or
LTO - List total summary only.

LONGLN - Lists up to 176 columns. Maximum line length = 202/203.
NOPRTCC - No print control column and page separators.
APNDLST - Append listing report to listing data set.

S NOSUMS - Generate no summary section in the report listing.
Others:DPACMT,DPADCMT,DPBLKCL,DPCBCMT,DPFTCMT,DPPDCMT,DPPLCMT,DPPSCMT,DPMACMT

(Enter these keywords directly on the main menu options selection lines)
PF1=Help PF3=Menu PF8=Menu

Figure 75. Example of the SuperC process options selection menu (search)

Chapter 6. Using Enhanced SuperC 205

You can either enter the name of an existing file that contains process statements, or press PF5 to
create a new file and specify the process statements.

Pressing PF5 displays the Process Statements Entry Menu (see Figure 76) showing examples of
some of the process statements available and allows you to enter the process statements that you
want.

When you exit from the Primary Search Menu, SuperC automatically generates a file (called
SRCHFOR SYSIN A) containing each of the process statements you have specified. (SRCHFOR
SYSIN A is entered against “Process Stmts ID” on the Primary Search Menu.)

Note: When you press PF5, SuperC erases any existing SRCHFOR SYSIN A file before creating
the new file.

Auto Display Pgm
This field specifies the name of an editor or browse program to inspect the search results:

program name
The name of a valid editor or browse program to be invoked to display the results of the
search. (For example, XEDIT, EPDF, BROWSE)

(space)
Results of search not displayed. Editor defaults to XEDIT.

Note: If no strings are found in the search:
1. The search results are not displayed.
2. The output listing file is still generated.

Primary Search Menu PF Key Definitions

PF1 Help. Displays the first search help menu.

PF3 SuperC exits from the search process and goes (or returns) to the Primary Comparison
Menu.

PF4 Quit. Terminates the search. Returns to the environment before SuperC.

PF5 Proc Stmts (Process Statements). Displays the Process Statements Entry Menu. This menu
contains some examples of the more widely used process statements. It also has a field to
allow you to input one process statement at a time into the SRCHFOR SYSIN A file.

Note: When you press PF5, SuperC erases any existing SRCHFOR SYSIN A file before
creating the new file.

PF8 Proc Opts (Process Options). Displays the Process Options Selection Menu.

HLASM Toolkit Feature SuperC Compare Program - Search Statements (1 of 1)

Enter Process Statements for Statements File:
==>

Examples Explanation

SRCHFOR ’ABCD’ W Search for the word "ABCD"
SRCHFORC ’DEFG’ "DEFG" must be on same line as word "ABCD"
CMPCOLM 1:60 75:90 Search columns 1:60 and 75:90 for string(s).

...

PF1=Help PF3=Menu PF5=Menu PF6=Cancel ENTER=Save Line

Figure 76. Example of the SuperC process statements entry menu (search)

206 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

PF10 Execute and Quit. Verifies user-input fields, invokes SuperC, and returns to the
environment before SuperC.

ENTER
Execute. Verifies user-input fields and invokes SuperC. After the search has completed,
control returns to the environment before the SuperC Search was invoked.

Invoking the search on CMS using command line input
You can use the SuperC Search on CMS to search:
v A file
v Selected files within a file group
v A file group
v A member within a MACLIB or TXTLIB
v Complete MACLIBs or TXTLIBs

This section describes how to invoke the SuperC Search directly from the command line, without using
the Primary Search Menu. For information about using this menu, see “Invoking the search on CMS
using menu input” on page 200.

To invoke the SuperC Search from the CMS command line, use the following format:

�� ASMFSUPC search_file_ID (SRCH �

� (' search_string ')
(' search_string ') CNTL (process_statements_file_ID)
(' search_string ') PROMPT

(1)
CNTL (process_statements_file_ID)

(1)
PROMPT

�

�
OLF (option_list_file_ID)

� option

��

Notes:

1 When no search string is entered on the ASMFSUPC command line, it must be specified by a
SRCHFOR process statement–either contained in a process statements file specified by the
keyword CNTL, or entered via the Process Statements Entry Menu (displayed using the keyword
PROMPT).

search_file_ID
The name of the file (or library) to be searched.

SRCH If followed by a search string (within parentheses and apostrophes), specifies the string to be
used in the search.

Note: When the search string is entered directly in the command line in this way, it is searched
for in uppercase only. (If you want the string searched for regardless of case, use the ANYC
process option.)

If not followed by a search string, one of the following must be used:

Chapter 6. Using Enhanced SuperC 207

1. The keyword CNTL to specify the process statements file containing one or more SRCHFOR
process statements, each specifying a search string.

2. The keyword PROMPT to display the Process Statements Entry Menu from which you can
enter one or more SRCHFOR process statements (each specifying a search string). SuperC
automatically enters these statements in the process statements file SRCHFOR SYSIN A.

Notes:

1. It is possible to specify a search string in the command line and one or more additional
search_strings (using SRCHFOR process statements) in the process statements file:
v Whose ID follows the keyword CNTL, or
v SRCHFOR SYSIN A (using the keyword PROMPT to display the Process Statements Entry

Menu).
2. The keywords CNTL and PROMPT cannot be used together. For further details, see “Process

Statement ID”.

OLF This is the keyword for the Options List File (when used). For further details, refer to “Options
List File”.

option Each type of option is described in detail following “Types of Options”.

Also, see “CMS command line option directives” on page 255 and “CMS command line statement
option directives” on page 256.

Examples of invoking the SuperC search on the CMS command line
To search for the string “ABC” in file TEST1 NEW A, enter:
ASMFSUPC TEST1 NEW A (SRCH(’ABC’)

To search for the string “ABC” in file TEST1 NEW A, using a SRCHFOR process statement in your
own-named process statements file MYPROC FILE A:
v Specify the process statement SRCHFOR ’ABC’ in the file MYPROC FILE A
v Enter:

ASMFSUPC TEST1 NEW A (SRCH CNTL(MYPROC FILE A)

To search for the string “ABC” in file TEST1 NEW A, using a SRCHFOR process statement entered via
the Process Statements Entry Menu:
v Enter:

ASMFSUPC TEST1 NEW A (SRCH PROMPT

v When the Process Statements Entry Menu is displayed, enter SRCHFOR ’ABC’

Types of options
You can specify any of the following options in the CMS command line or in the Options List file (see
“Options List File”):

Member Names
This option specifies the name of a member within a library.

�� NMEM (search_member_name) ��

For example:
ASMFSUPC MACLIB NEW A (SRCH(’DEF’) NMEM(MEMB1)

searches for the string “DEF” in member MEMB1 in the macro library NEW.

208 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Note: Member names can only be used as options when the search_file_ID specified refers to
either a macro or text library.

Listing File
This option specifies the alternative name to be assigned to the listing file generated as a result of
the search process.

�� LISTING (listing_file_ID) ��

For example:
ASMFSUPC TEST1 NEW A (SRCH(’ABC’) LISTING(CMPLIST RESULTS A)

creates a listing file named CMPLIST RESULTS A.

Note: If you do not use the LISTING option, the listing file is generated with a default ID
consisting of:
fn File name of the search file
ft SRCHFOR
fm A

Display Output
This option determines if the results of the search are to be displayed.

�� DSPL
(NO)

(YES)
��

NO Do not display output

YES
Display output

For example:
ASMFSUPC TEST1 NEW A (SRCH(’ABC’) DSPL(YES)

causes the search results to be displayed.

Note: If you specify an editor or browse program (see following option), the “Display Output”
option defaults to YES.

For a further description of the Display Output option, see “Display output” on page 185.

Auto Display Program
This option is used with the Display Output option. It allows you to use the editor or browse
program of your choice (if it is supported in your processing environment). The default is XEDIT.

Examples:
ASMFSUPC TEST1 NEW A (SRCH(’ABC’) EPDF

ASMFSUPC TEST1 NEW A (SRCH(’ABC’) XEDIT

ASMFSUPC TEST1 NEW A (SRCH(’ABC’) BROWSE

Chapter 6. Using Enhanced SuperC 209

These examples specify editors EPDF and XEDIT, and browse program BROWSE.

For a further description of the Auto Display Program, see “Invoking the search on CMS using
menu input” on page 200.

Process Options
This option specifies the process options to be used in the search process.

These can be one or more of the process option keywords which are valid for the SuperC Search.
For details of these, see “Process options” on page 216.

For example:
ASMFSUPC TEST1 NEW A (SRCH(’ABC’) ANYC

specifies the process option ANYC so that the string “ABC” is searched for regardless of case.
Matches are found, for example, with “abc” and “AbC” and “ABc” in file TEST1 NEW A.

Option Directives
You can use any of the following option directive keywords:
ERASRC0

Erase listing file if no differences
NOIMSG

No information messages
NOOLF

No Options List file
PRINT

Print results

For example:
ASMFSUPC TEST1 NEW A (SRCH(’ABC’) NOOLF

specifies that any options contained in the Options List file are not to be used in the search.

For further descriptions of each Option Directive, see “CMS command line option directives” on
page 255.

Process Statement Directives
The following directives are transformed into process statements. They can be one of the
following keywords:
CC Compare columns
LC List columns
LT Line count

For example:
ASMFSUPC TEST1 NEW A (SRCH(’ABC’) LC(7:14)

selects columns 7 to 14 to be listed in the output.

For further descriptions of each process statement directive, see “CMS command line statement
option directives” on page 256.

Process Statement ID
This option specifies how process statements are to be supplied to the SuperC Search.

One of two keywords can be used:

CNTL Use the CNTL keyword if you want to use an existing file that contains the process
statements you require.

210 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

�� CNTL (process_statement_file_ID) ��

For example:
ASMFSUPC TEST1 NEW A (SRCH(’ABC’) CNTL(TSTPRO OPTS A)

specifies that the process statements in file TSTPRO OPTS A are to be used.

PROMPT
PROMPT indicates to SuperC that the file SRCHFOR SYSIN A is to be used to supply the
process statements and causes the Process Statements Entry Menu to be displayed. This
menu contains examples of the more widely used process statements. It also has a field
that allows you to input one process statement at a time into the SRCHFOR SYSIN A file.

For example:
ASMFSUPC TEST1 NEW A (SRCH(’ABC’) PROMPT

causes the Process Statements Entry Menu to be displayed.

Note: If SRCHFOR SYSIN A already exists, its contents are erased before creating the
new file.

Options List File
You can use the Options List file to hold a set of default options (to save you entering them each
time on the CMS command line). Any of the options described in this section can be placed in
the Option List file and take effect unless overridden by options in the command line.

If you do not specify a name for the Options List file, SuperC looks for a file with the default
name SRCHFOR OLIST A and, if found, uses the options contained in that file for the search
process.

However, you can nominate an alternative Options List file by using the keyword OLF. OLF
allows you to specify either a fully qualified file ID (fn ft fm) or a partially qualified file ID for the
Options List file that you want SuperC to use (see “Default Naming Convention for Options List
file”).

Note: SuperC uses options contained in an OLF-specified Options List file before those in
SRCHFOR OLIST A (see “Command line priority and overriding” on page 212).

�� OLF (options_list_file_ID) ��

For example:
ASMFSUPC TEST1 NEW A (SRCH(’ABC’) OLF(MYOPTS FILE A)

specifies that the options in file MYOPTS FILE A are to be used.

Note: Not all options in the Options List file can be overridden since there is no way to negate
them. Take care when considering which options to include in the file when using OLF.

To examine this further, let's look at an example of an Options List file containing the following:
XEDIT CNTL(SRCHFOR STMTS A)

If the Options List file that you nominate in the CMS command line (by using the OLF keyword)
contains the above options, you cannot override the Process Statements ID keyword CNTL (and
therefore the process statements contained in the file SRCHFOR STMTS A take effect).

Chapter 6. Using Enhanced SuperC 211

Default Naming Convention for Options List file: The command line uses the following defaults
in the naming of the Options List file:

Command Line OLF ID Used
ASMFSUPC...(... SRCHFOR OLIST A
ASMFSUPC...(NOOLF... (none)
ASMFSUPC...(OLF(TST1)... TST1 OLIST A
ASMFSUPC...(OLF(TST1 OPTS)... TST1 OPTS A
ASMFSUPC...(OLF(TST1 OPTS A)... TST1 OPTS A

Command line priority and overriding
The following priority sequence is used unless the NOOLF option is specified:

First priority
Options from the command line

Second priority
Options from the user-specified Options List file

Third priority
Options from SRCHFOR OLIST A

Note: If you specify an option in the command line that conflicts with an option in the Options List file,
the option in the Options List file takes precedence. (SuperC lists the conflicting option in the output
listing.)

SRCH process statement directive
SRCH is the command line directive for the SRCHFOR process statement and is used only for the SuperC
Search.

SRCH specifies:
v The string that is to be searched for
v An optional string qualifier:

W Word. String must appear as a separate word. That is, be delimited by one or more spaces or
special characters.

P Prefix. String must appear as the first part of some other text.

S Suffix. String must appear as the last part of some other text.
v A relational operator (where there is more than one string specified):

& And. Both of the strings (either side of the “&”) must appear on the same line.

| Or. At least one of the strings (either side of the “|”) must appear on the line.

Up to 6 relational operators may be used in one SRCH. When more than one relational
operator is used, they are processed from left to right. Parentheses are not permitted.

Example
Description

ASMFSUPC...(SRCH(’ABC’ | ’DEF’)
Find a line with string “ABC” or string “DEF”

ASMFSUPC...(SRCH(’AB C’ & ’DEF’ W)
Find a line with string “AB C” and word “DEF”

212 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Invoking the search on z/VSE
On z/VSE, you invoke the SuperC Search as a batch program. You can use the SuperC Search on z/VSE
to search:
v A sequential file (VSAM-managed or non-VSAM-managed)
v A tape file
v One, several, or all the members of a Librarian sublibrary

The following examples describe the job control statements required for each of these searches. Study the
first example before looking at subsequent examples. Only the first example describes each required
statement in detail; subsequent examples describe only the statements specific to that search.

z/VSE JCL example 1: Non-VSAM-managed sequential files
Figure 77 shows simplified z/VSE JCL for searching a non-VSAM-managed sequential file. This example
is supplied with SuperC in the Librarian member ASMFVSS1.Z.

Before running this example, edit the lines highlighted by numbers (such as �1�) as described in the
instructions following the example listing.

�1� Replace search_file_name with your choice of DLBL name for the file to be searched; also insert
this DLBL name in the NEWDD process statement (see �3�). Replace search_file_ID with the name
of the file to be searched. Insert appropriate extent information and assign logical unit
information.

�2� Replace process_options with any process options you want to use to customize how SuperC
performs the search or formats the listing.

For a description of each process option, see “Process options” on page 216.

For example:

// JOB ASMFVSS1
// LIBDEF *,SEARCH=(PRD2.PROD)
// OPTION NODUMP
/*
/* Define file to be searched
/*
// DLBL search_file_name,’search_file_ID’,0,SD ┐
// EXTENT extent_information ├─ �1�
// ASSGN assign_logical_unit_information ┘
/*
/* Note: The listing file is output to SYSLST.
/* (If the WIDE process option is used, SYSLST must be
/* assigned to a printer capable of handling lines of
/* at least 202 characters.)
/*
/* Run the search with these options...
/*
// EXEC ASMFSUPC,PARM=’SRCHCMP process_options’ �2�
*
* ...and these process statements
*
NEWDD search_file_name,attributes �3�
SRCHFOR ’search_string’ �4�...
other_process_statements �5�...
/*
/&

Figure 77. Sample z/VSE JCL for searching a non-VSAM-managed sequential file

Chapter 6. Using Enhanced SuperC 213

PARM=’SRCHCMP DPCBCMT COBOL’

instructs SuperC to perform a search:
v Ignoring COBOL comment lines. (Process option DPCBCMT ignores lines with an “*” in

column 7.)
v Ignoring columns 1 to 6. (Process option COBOL ignores columns 1 to 6 which are assumed to

be sequence numbers.)

SuperC outputs the listing file to SYSLST. For a selection of sample listing files, see
“Understanding the listings” on page 257.

�3� NEWDD is a process statement that allows you to:
v Use your own choice of DLBL name for the file to be searched. If you do not specify a

NEWDD process statement, you must use the DLBL name NEWDD.
v Specify file attributes for the file to be searched. If you do not specify a NEWDD process

statement with file attributes, SuperC assumes that the (non-VSAM) file to be searched contains
fixed-length unblocked records with a record size and block size of 80.

For more information about the NEWDD process statement, see “DD-VSE DLBL/TLBL
definitions” on page 236.

�4� Replace search_string with a string that you want to search for. For information about specifying
search strings, see “Search strings in the input file” on page 245.

�5� Insert any other process statements (one per line) that you want to use.

For example, the following process statement:
DPLINE ’ignore this line’

instructs SuperC to exclude from the search any lines containing the specified string (“ignore this
line”).

For more information about process statements, see “Process statements” on page 227.

z/VSE JCL Example 2: VSAM-managed sequential files
Figure 78 shows simplified z/VSE JCL for searching a VSAM-managed sequential file. This example is
supplied with SuperC in the Librarian member ASMFVSS2.Z.

If you want to use a DLBL name other than NEWDD, then you must specify a NEWDD process
statement (as shown in Figure 77 on page 213).

If you specify file attributes with the NEWDD process statement, then those file attributes override the
VSAM catalog entries for the file to be searched.

// JOB ASMFVSS2
// LIBDEF *,SEARCH=(PRD2.PROD)
// OPTION NODUMP
// DLBL NEWDD,’search_file_ID’,0,VSAM,CAT=IJSYSUC,DISP=(OLD,KEEP)
// EXEC ASMFSUPC,PARM=’SRCHCMP process_options’
SRCHFOR ’search_string’...
other_process_statements...
/*
/&

Figure 78. Sample z/VSE JCL for searching a VSAM-managed sequential file

214 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

z/VSE JCL example 3: VSAM files
Figure 79 shows simplified z/VSE JCL for searching a VSAM file. This example is supplied with SuperC
in the Librarian member ASMFVSS3.Z.

If you want to use a DLBL name other than NEWDD, then you must specify a NEWDD process
statement (as shown in Figure 77 on page 213). In native VSAM, the file's attributes are taken from the
VSAM catalog.

z/VSE JCL example 4: Tape file
Figure 80 shows simplified z/VSE JCL for searching a labeled tape file. This example is supplied with
SuperC in the Librarian member ASMFVSS4.Z.

Note: For unlabeled tape input, no // TLBL statement is used.

�1� Replace search_file_name with your choice of TLBL name for the file to be searched; also insert this
TLBL name in the NEWDD process statement (see �3�). Replace search_file_ID with the name of
the file to be searched.

�2� Insert appropriate physical unit information for the tape unit holding the tape file to be searched.

�3� NEWDD is a process statements that, for tape input, allows you to:
v Use your own choice of TLBL name for the search file. If you do not specify a NEWDD process

statement, you must use the TLBL name NEWDD.
v Specify file attributes for the search file. If you do not specify a NEWDD process statement

with file attributes, SuperC assumes that the search file is fixed unblocked with a record size
and block size of 80.

// JOB ASMFVSS3
// LIBDEF *,SEARCH=(PRD2.PROD)
// OPTION NODUMP
// DLBL NEWDD,’search_file_ID’,,VSAM,CAT=IJSYSUC
// EXEC ASMFSUPC,PARM=’SRCHCMP process_options’
SRCHFOR ’search_string’...
other_process_statements...
/*
/&

Figure 79. Sample z/VSE JCL for searching a VSAM file

// JOB ASMFVSS4
// LIBDEF *,SEARCH=(PRD2.PROD)
// OPTION NODUMP
// TLBL search_file_name,’search_file_ID’ �1�
// ASSGN SYS001,physical_unit_information �2�
// EXEC ASMFSUPC,PARM=’SRCHCMP process_options’
NEWDD search_file_name,attributes �3�
SRCHFOR ’search_string’...
other_process_statements...
/*
/&

Figure 80. Sample z/VSE JCL for searching a labeled tape file

Chapter 6. Using Enhanced SuperC 215

For more information about the NEWDD process statement, see “DD-VSE DLBL/TLBL
definitions” on page 236.

z/VSE JCL example 5: Librarian members
Figure 81 shows simplified z/VSE JCL for searching all members in a Librarian sublibrary. This example
is supplied with SuperC in the Librarian member ASMFVSS5.Z.

To restrict the search to selected members only, use the SELECT process statement. For example, the
following process statement:
SELECT TEST1.C,TEST2.C

instructs SuperC to search only members TEST1.C and TEST2.C in the sublibrary srchlib.sublib.

For more information about the SELECT process statement, see “Select members (z/VSE)” on page 248.

To search only one Librarian member, you can:
v Use the SELECT process statement.
v In the NEWDD process statement, specify a member rather than a sublibrary. For example:

NEWDD LIB.SRCHLIB.TEST1.C

To search a group of members in a sublibrary, specify asterisk (*) wildcard characters in the member
name or type in the NEWDD process statement. For example:
NEWDD LIB.SRCHLIB.TEST*.*

Process options
You can tailor the comparison or search using process options and process statements. Process options are
single keywords, whereas process statements consist of a keyword and one or more operands. For details
on process statements, see “Process statements” on page 227.

On z/OS, you specify process options in a JCL PARM parameter:
v For comparison processing, refer to “Invoking the comparison on z/OS” on page 176.
v For search processing, refer to “Invoking the search on z/OS” on page 199.

On CMS, you specify process options:
v On a menu

– For comparison processing, refer to “Process options” on page 182.
– For search processing, refer to “Invoking the search on CMS using menu input” on page 200.

v On the CMS command line
– For comparison processing, refer to “Types of options (additional)” on page 187.
– For search processing, refer to “Types of options” on page 208.

// JOB ASMFVSS5
// LIBDEF *,SEARCH=(PRD2.PROD)
// OPTION NODUMP
// EXEC ASMFSUPC,PARM=’SRCHCMP process_options’
NEWDD srchlib.sublib
SRCHFOR ’search_string’...
other_process_statements...
/*
/&

Figure 81. Sample z/VSE JCL for searching all members in a sublibrary

216 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

v By means of the Options List file
– For comparison processing, refer to “Types of options (additional)” on page 187.
– For search processing, refer to “Options List File”.

On z/VSE, you specify process options in a JCL PARM parameter:
v For comparison processing, refer to “Invoking the comparison on z/VSE” on page 193.
v For search processing, refer to “Invoking the search on z/VSE” on page 213.

Table 25 lists each of the process option keywords and shows the compare type for which each process
option can be used. The table also shows if the process option is valid for the SuperC Search.

Following Table 25 are descriptions for each type of process option.

Table 25. Summary of process options

Process Option
Valid For

Compare Type
Search

Keyword Description FILE LINE WORD BYTE

ALLMEMS All members U U U U U

ANYC Any case U U U

APNDLST 1 Append listing output U U U U U

APNDUPD 1 Append update U U U U

ASCII Translate ASCII input data U U U U U

CKPACKL 1 Check for packed format U U

CNPML 2 Count non-paired member/file lines U

COBOL 3 For COBOL source files U U U

COVSUM Conditional summary U U U U

CPnnnnn Specify EBCDIC code page U U U U U

DLMDUP Do not list matching duplicate lines U

DLREFM Do not list reformatted lines U

DPACMT Do not process asterisk (*) comment lines U U U

DPADCMT Do not process ADA-type comments U U U

DPBLKCL Do not process blank comparison lines U U U

DPCBCMT Do not process COBOL-type comment lines U U U

DPCPCMT Do not process C++ -type comment lines U U U

DPFTCMT Do not process FORTRAN-type comment lines U U U

DPMACMT Do not process PC Assembly-type comment lines U U U

DPPLCMT Do not process PL/I-type comments U U U

DPPSCMT Do not process Pascal-type comments U U U

FINDALL Require all strings found for return code 1 U

FMSTOP Stop immediately a difference found U

FMVLNS Flag moved lines U

GWCBL Generate WORD/LINE comparison change bar
listing

U U

IDPFX Identifier-prefixed listing lines U

LMCSFC 4,9 Load module CSECT file compare U

Chapter 6. Using Enhanced SuperC 217

|||||||

|||||||

Table 25. Summary of process options (continued)

Process Option
Valid For

Compare Type
Search

Keyword Description FILE LINE WORD BYTE

LMTO 5 List group member totals U

LNFMTO 5 List not-found member totals only U

LOCS List only changed entries in summary U U U U

LONGLN 6 Long lines U U

LPSF 5 List previous-search-following lines U

LTO 5 List totals only U

MIXED Mixed input (single/double byte) text U U

NARROW 6 Narrow (side-by-side) listing U

NOPRTCC No printer control columns U U U U U

NOSEQ 3 No sequence numbers U U U

NOSUMS No summary section U U U U

REFMOVR Reformat override U

SDUPM 9 Search duplicate members U

SEQ 3 Ignore standard sequence number columns U U U

SYSIN 9 Provide alternative DD name for process statements. U U U U U

UPDCMS8 7 Update CMS8 format U

UPDCNTL 7 Update control U U U

UPDLDEL 7 Update long control U

UPDMVS8 7 Update MVS8 format U

UPDPDEL 7 Update prefixed delta lines U

UPDREV 7 Update revision U U

UPDREV2 7 Update revision (2) U U

UPDSEQ0 7 Update sequence 0 U

UPDSUMO 7 Update summary only U U U

WIDE 6 Wide (side-by-side) listing U

XREF Cross reference strings U

XWDCMP Extended word comparison U

Y2DTONLY 8 Compare Dates Only U

Notes:

1. Not supported on z/VSE

2. Valid for group LINE comparisons only.

3. COBOL, SEQ, and NOSEQ are mutually exclusive.

4. Not supported for PDSE.

5. LMTO, LNFMTO, LPSF, and LTO are mutually exclusive.

6. LONGLN, NARROW, and WIDE are mutually exclusive.

7. All update (UPD) process options are mutually exclusive. Also, they cannot be used with the process option
Y2DTONLY.

8. Y2DTONLY is not supported for change bar listing (process option GWCBL).

9. Supported on z/OS only.

218 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Here are the SuperC process options, listed alphabetically:

ALLMEMS
Process all members in a PDS including ALIAS members. Without this process option, when
performing a PDS compare, SuperC does not include members with the ALIAS attribute unless
explicitly specified by a SELECT process statement. The ALLMEMS process option indicates that
all directory entries including those with the ALIAS attribute are to be processed.

ANYC Any case. Lowercase alphabetic characters (a to z) in source files are translated to uppercase (A to
Z) before comparison processing. (The actual input files are not modified.)

Use this option to cause strings such as “ABC”, “Abc”, “ABc”, to compare equally.

Valid for LINE and WORD compare types and Search.

APNDLST
The APNDLST process option appends the listing output to the specified or default listing file. If
the file does not exist, it is created.

APNDLST allows you to collect updates from multiple comparisons into one listing file.

Valid for FILE, LINE, WORD, and BYTE compare types and Search.

Notes:

1. You can also do this by using the SELECT process statement (and, on CMS, SELECTF) that
identifies different files/members and produces a single listing.

2. APNDLST is not supported on z/VSE.

APNDUPD
The APNDUPD process option appends the update output to the specified or default update file.
If the file does not exist, it is created.

APNDUPD allows you to collect updates from multiple comparisons into one update file.

Valid for LINE, WORD, and BYTE compare types and Search.

Note:

1. You can also do this by using the SELECT process statement (and, on CMS, SELECTF) that
identifies different files/members and produces a single listing.

2. APNDUPD is not supported on z/VSE.

ASCII Process ASCII input files. For LINE or WORD compare and for Search, the input data is
translated from ASCII to EBCDIC. For BYTE compare, character data in the listing is translated
from ASCII to EBCDIC. For FILE compare, this option is accepted but has no effect. Any search
or change string given in hexadecimal notation is assumed to be in ASCII, matching the original
input data. The ASCII code page is assumed to be ISO 8859-1 (CCSID 819). The EBCDIC code
page may be specified using the CPnnnnn option.

CKPACKL
Check for packed format. This option determines if the member or sequential data set has the
standard ISPF/PDF packed header format. If required, SuperC unpacks the input data set or
member during the comparison.

Valid for LINE and WORD compare types.

Note: CKPACKL is not supported on z/VSE.

CNPML
Count non-paired member/file lines for the group summary list. Use this option to inventory the
total number of processed and not-processed lines. Otherwise, only the paired entries are listed
with line counts.

Chapter 6. Using Enhanced SuperC 219

||
|
|
|
|
|

Valid for LINE compare type.

Note: CNPML is only used when comparing a group of files.

COBOL
Ignore columns 1 to 6 in both COBOL source files. Data in columns 1 to 6 is assumed to be
sequence numbers.

Valid for LINE and WORD compare types and Search.

COVSUM
Conditional summary section. List the final summary section or the update file for the option
UPDSUMO only if there are differences. This is useful when used in combination with APNDLST
or APNDUPD.

Valid for FILE, LINE, WORD, and BYTE compare types.

CPnnnnn
Use the specified EBCDIC code page number (up to five digits) when translating data using the
ASCII option. The default is CP1047. All CECP and Euro Latin-1 code pages are supported, as
follows:
v Default: 1047 (Open Systems Latin-1 EBCDIC)
v CECP: 37, 273, 277, 278, 280, 284, 285, 297, 500, 871
v ECECP (Euro): 1140 to 1149

DLMDUP
Do not list matching duplicate lines. Old file source lines that match new file source lines are
omitted from the side-by-side output listing.

Valid for LINE compare type.

DLREFM
Do not list reformatted lines. Old file source lines that have the same data content (that is, all data
is the same except the position and number of space characters) as the new file lines are omitted
from the listing. Only the new file reformatted lines are included in the output.

Valid for LINE compare type.

DPACMT
Do not process asterisk (*) comment lines. Lines with an “*” in column 1 are excluded from the
comparison set. Other forms of assembler comments are unaffected.

Valid for LINE and WORD compare types and Search.

DPADCMT
Do not process ADA type comments. ADA comments are whole or partial lines that appear after
the special “--” sequence. Blank lines are also considered part of the comment set. This option
produces a comparison listing with comments removed and part comments blanked.

Valid for LINE and WORD compare types and Search.

DPBLKCL
Do not process blank comparison lines. Source lines in which all the comparison columns are
blank are excluded from the comparison set.

Note: It is redundant to use this option with DPADCMT, DPPLCMT, or DPPSCMT as these
process options also bypass blank comparison lines.

Valid for LINE and WORD compare types and Search.

DPCBCMT
Do not process COBOL-type comment lines. COBOL source lines with an “*” in column 7 are
excluded from the comparison set

220 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

|
|
|
|

|

|

|

Valid for LINE and WORD compare types and Search.

DPCPCMT
Do not process C++ end-of-line type compiler comments. These are “//” delimited comments.
DPPLCMT may also be used with DPCPCMT when the source file contains “/* ... */” comments
delimiters.

Valid for LINE and WORD compare types and Search.

DPFTCMT
Do not process FORTRAN-type comment lines. FORTRAN source lines with a “C” in column 1
are excluded from the comparison set.

Valid for LINE and WORD compare types and Search.

DPMACMT
Do not process PC Assembly-type comments. This uses the IBM PC definition for assembler
comments: comments begin with either the COMMENT assembler directive or a semi-colon (;).

Valid for LINE and WORD compare types and Search.

DPPLCMT
Do not process PL/I-type comments. PL/I, C++, C, REXX comments (/* ... */) and blank lines
are excluded from the comparison set. This option produces a listing with all comments removed
and blanked.

Valid for LINE and WORD compare types and Search.

DPPSCMT
Do not process Pascal-type comments. Comments of the type (* ... *) and blank lines are excluded
from the comparison. DPPSCMT and DPPLCMT may be required for some Pascal compiler
comments. This option produces a comparison listing with comments removed and part
comments blanked.

Valid for LINE and WORD compare types and Search.

FINDALL
All strings must be satisfied for the search to be considered successful, whereupon the return
code is set to one.

Notes:

1. If all searches are not satisfied, there is NO message to indicate this, other than RC=0. To find
which searches failed, specify the XREF process option.

2. If the FMSTOP option is specified, the search will stop once it has satisfied all search strings.

FMSTOP
Immediately a difference is found between files, stops the compare with a return code of 1. This
option provides a quicker way of telling if two files are different.

Valid for FILE compare type.

FMVLNS
Flag moved lines. Identify inserted lines from the new file that match deleted lines from the old
file. Inserted-moved lines are noted with “IM” and deleted-moved lines are noted with “DM” in
the listing.

Valid for LINE compare type.

Notes:

1. Maximum length for lines is 256 characters.
2. Maximum length for a contiguous block of moved lines is 32K.

Chapter 6. Using Enhanced SuperC 221

GWCBL
Generates WORD/LINE comparison change bar listings. SuperC lists new file lines with change
bars (“|”) in column 1 for lines that differ between the new and old files. Deleted lines are
indicated by flagging the lines following the deletion.

Valid for LINE and WORD compare types.

Notes:

1. LINE comparison and WORD comparison may give slightly different results due to their
sensitivity to word and line boundaries. For further details, see “Reasons for differing
comparison results” on page 297.

2. GWCBL cannot be used with the process option Y2DTONLY.

IDPFX
Identifier prefixed. File ID or member name is prefixed to the search string lines of the listing. See
Figure 102 on page 276 for an example of a IDPFX listing.

Valid for Search.

LMCSFC
Load module CSECT file compare list. Lists the name, number of bytes, and hash sum for each
load module CSECT. Unchanged paired CSECTs are omitted when you specify the LOCS process
option.

Notes:

1. LMCSFC is not supported for PDSE.
2. LMCSFC is supported on z/OS only.

Valid for FILE compare type.

LMTO
List group member totals. Lists the member summary totals and the overall summary totals for
the entire file/group. See Figure 104 on page 277 for an example of an LMTO listing.

Valid for Search.

LNFMTO
List “not found” member totals only. Lists the members that have no strings found for the entire
file/group.

Valid for Search.

LOCS List only changed entries in summary. Normally, for groups of files/members being compared,
SuperC lists all paired entries in the Member Summary Listing section of the listing file.
Preceding the names of these pairs is a CHNG field to indicate whether the comparison found
any differences or not. Figure 91 on page 268 shows a FILE comparison without LOCS. Figure 92
on page 269 shows a FILE comparison with LOCS.

When LOCS is specified, only those pairs which have changes are listed in the summary section.

Valid for group FILE, LINE, WORD, and BYTE compare types.

LONGLN
Long lines. LONGLN causes SuperC to create a listing with 203 columns, reflecting up to 176
columns from the source files. This file may exceed the maximum number of columns handled by
many printers.

Valid for LINE compare type and Search.

LPSF List previous-search-following lines. Lists the matched string line and up to 6 preceding and 6
following lines for context. The preceding and following count may be changed by using the

222 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

LPSFV process statement. This allows a count range of 1 to 50 lines. A value of 0 is invalid, since
this produces a normal search without any options.

Valid for Search.

LTO List totals only. List the overall summary totals for the entire file/member group. See Figure 106
on page 278 for an example of an LTO listing.

Valid for Search.

MIXED
Mixed input. Indicates that the input text may be a mixture of both single-byte and double-byte
(DBCS) text. Double-byte strings are recognized and handled differently than if MIXED were not
specified. For instance, single byte characters are not valid within double-byte strings. Special
terminal devices (for example, 5520) allow entry of DBCS characters.

Valid for LINE and WORD compare types.

NARROW
Narrow side-by-side listing. Creates a 132/133 variable listing file with only 55 columns from
each source file. Insertions and deletions are flagged and appear side-by-side in the listing output.
Refer to Figure 88 on page 265 and Figure 89 on page 266 for examples of NARROW listings.

Valid for LINE comparison.

NOPRTCC
No printer control columns. SuperC generates “normal” or NARROW listing files with record
lengths of 133 columns, or WIDE or LONGLN listing with 203 columns. These listings contain
printer control columns and page separators. NOPRTCC eliminates both the page separators and
page header line. With NOPRTCC, “normal” and NARROW listings are 132 columns, and WIDE
and LONGLN listings are 202. Section separators and title lines are still generated. This file may
be preferred for on-line “browsing”.

Valid for FILE, LINE, WORD, and BYTE compare types and Search.

NOSEQ
No Sequence numbers. Process fixed-length 80-byte record standard sequence number columns
(73 to 80) as data. This option is extraneous for any record size other than 80.

Valid for LINE and WORD compare types and Search.

NOSUMS
No Summary Section. Eliminates the group and final summary section from the output listing.
This allows the user to generate a better “clean” copy for program inspection. Conversely, it
eliminates the all-problem information in case of errors and option identification.

Valid for LINE, WORD, and BYTE compare types and Search.

REFMOVR
Reformat override. Reformatted lines are not flagged in the output listing. They are, however,
counted for the overall summary statistics and influence the return code since they are a special
case of an insert/delete pair.

Valid for LINE compare type.

SDUPM
Search duplicate members. Searches all members found in concatenated PDS data sets, even if
more than one member is found to have the same name. Searches duplicate names even if the
search is for a single member or if members are specified using the SELECT process statement.

Valid for Search.

Note: SDUPM is supported on z/OS only.

Chapter 6. Using Enhanced SuperC 223

SEQ Sequence numbers. Ignore fixed-length 80-byte record standard sequence number columns.
Sequence numbers are assumed in columns 73 to 80 for such records. This option is invalid for
any record size other than 80.

Valid for LINE and WORD compare types and Search.

SYSIN
Provide alternate DD name for process statements. Syntax is SYSIN(DDNAME). The default ddname
is SYSIN. If this option is used, SuperC only accesses process statements via the supplied
ddname. It does not attempt to access additional process statements via the SYSIN2 DD card.

Valid for FILE, LINE, WORD, and BYTE compare types and Search.

Note: SYSIN is supported on z/OS only.

UPDCMS8
Update CMS 8 format. UPDCMS8 produces an update file that contains both control records and
source lines from the new input file. UPDCMS8 requires that the old file has fixed-length 80-byte
records with sequence numbers. The new file may have a variable or fixed length format with an
LRECL ≤ 80.

SuperC may change the status of match lines to insert/delete pairs, enlarging the sequence
number gaps of the old file. The update file (when properly named) can be used as input to CMS
XEDIT. For information and an example of this update file, see “Update CMS sequenced 8 file”
on page 281.

Valid for LINE compare type.

UPDCNTL
Update Control. Produces a control file which relates matches, insertions, deletions, and
reformattings using relative line numbers (for LINE compare type), relative word positions (for
WORD compare type), or relative byte offsets (for BYTE compare type) within the new and old
file. No source or data from either input file is included in the output file. “Do not” process
options/statements are compatible selections for the LINE compare type. For information and an
example of this update file, see “Update control files” on page 282.

Valid for LINE, WORD, and BYTE compare types.

UPDLDEL
Update Long Control with all matches and delta changes. This reflects the comparison's matches,
inserts, and deletes. You can edit this update file accepting, rejecting, or modifying the changes.

There are control records preceding each change and matching section. After the changes have
been audited, optionally modified, and the control records removed, you should be able to reuse
this control file as a composite new file.

Valid for LINE compare type.

UPDMVS8
Update MVS8 format. Produces a file that contains both control and new file source lines.
Sequence numbers from columns 73 to 80 of the new file are used (when possible) as insert
references, while deletes use sequence numbers from columns 73 to 80 of the old file. Both files
must have fixed-length 80-byte records. The format of the generated data may be suitable as
z/OS IEBUPDTE input. For information and an example of this update file, see “Update MVS
sequenced 8 file” on page 285.

Valid for LINE compare type.

UPDPDEL
Update prefixed delta lines. Produces a control data set containing header records and complete
(up to 32K line length limit) delta lines from the input source files. Each output record is prefixed
with identification and information. The update data set is a variable-length data set reflecting
the input source files' characteristics.

224 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Valid for LINE compare type.

UPDREV
Update Revision. UPDREV produces a copy of the new file with SCRIPT/VS .rc on/off or
BookMaster :rev/:erev revision codes delimiting most script lines that contain changes.

You may wish to contrast the source lines delimited by the UPDREV option and a similar
flagging of the lines with changes from the output listing file as produced by the GWCBL
process.

Note: The revision character used is controlled by using the REVREF process statement. For
details, see “Revision code reference” on page 245.

A REVREF process statement (for example, REVREF REFID=ABC or REVREF RCVAL=1) defines the
revision level (SCRIPT/VS tags) or reference ID (BookMaster tags). Alternatively, SCRIPT/VS .rc
delimiters may be controlled by the first record in the new file. (For example, .rc 2 | as the first
record causes level 2 to be used).

Note: BookMaster requires the REFID value to be defined with a :revision tag and “RUN=YES”
attribute to have the change character inserted in the processed document.

For information and an example of this update file, see “Revision file” on page 279.

Valid for LINE and WORD compare types.

UPDREV2
Update Revision (2). UPDREV2 is identical to UPDREV with the exception that data between the
following BookMaster tags are not deleted in the update file:
:cgraphic.
:ecgraphic.

:fig.
:efig.

:lblbox.
:elblbox.

:nt.
:ent.

:screen.
:escreen.

:table.
:etable.

:xmp.
:exmp.

Valid for LINE and WORD compare types.

UPDSEQ0
Update Sequence 0 (zero). UPDSEQ0 produces a control file that relates insertions and deletions
to the relative line numbers of the old file. Both control records and new file source lines are
included in the output file. This option is like UPDCMS8 except that it uses relative line numbers
(starting with zero) instead of the sequence numbers from columns 73 to 80. The control field
after a “$” designates the number of new source lines that follow in the update file.

Both fixed and variable record length lines are allowed. Fixed-length records shorter than 80
bytes are padded with spaces to 80. Insertion lines are full fixed or variable length copies of the
new input data set lines. For information and an example of this update file, see “Update
sequenced 0 file” on page 287.

Chapter 6. Using Enhanced SuperC 225

Valid for LINE compare type.

UPDSUMO
Update Summary only. UPDSUMO produces an update file of 4 lines (new file ID, old file ID,
totals header, single summary line). The summary line is tagged with a “T” in column 1 and the
summary statistics are located at fixed offsets in the output line. The file has a record length of
132. For information and an example of this update file, see “Update summary only files” on
page 287.

Valid for LINE, WORD, and BYTE compare types.

VTITLE
Volume title. VTITLE modifies the compare listing so that the data set volume serial is printed
below the data set name.

For a multi-volume data set only the VOLSER of the first volume is displayed.

VTITLE is ignored if the NTITLE or OTITLE process options are specified.

Valid for LINE, WORD, and BYTE compare types.

WIDE Wide side-by-side listing. Creates a 202/203 variable-length listing file with 80 columns from each
source file. Inserts and deletes are flagged and appear side-by-side in the listing output. For an
example of a WIDE side-by-side listing, see Figure 90 on page 267.

Valid for LINE compare type.

XREF Cross reference strings. Creates a cross reference listing by search string. Can be used with
IDPFX, LMTO LNFMTO, and LTO. Not implemented for LPSF.

The XREF option can be useful when more than one search string (or search condition) is
specified. The XREF listing is implemented using a multiple pass operation for listing the “lines
found” for each individual string. Be aware that XREF adds some additional processing overhead
to the normal search process. For an example of a search XREF listing, see Figure 98 on page 273.

Valid for Search.

XWDCMP
Extended WORD comparison. The word delimiter set is extended to include non-alphanumeric
characters (including spaces). For example, “ABCD(EFGH) JKL” is 2 words using normal WORD
compare type, but 5 (3 words and 2 pseudo-words) with the XWDCMP process option.

Valid for WORD compare type.

Y2DTONLY
Compare Dates Only. Indicates that the comparison process is to be performed only on the dates
defined by the Date Definition process statements. That is, all data in the input files is ignored in
the comparison process apart from that defined by NY2C, NY2Z, NY2D, NY2P, OY2C, OY2Z,
OY2D, and OY2P process statements. For further details on these process statements, see “Date
definitions” on page 252.

Notes:

1. Y2DTONLY causes a “record-for-record” comparison to be performed between the two input
files, whereby dates are checked for being equal or unequal. (The “high/low” comparison
logic that SuperC normally uses is not applied in the case of Y2DTONLY and, as such, the
relative values of the dates have no bearing on the result of the comparison.)

2. Y2DTONLY is not supported for the process option GWCBL (change bar listing).

Valid for LINE compare type.

226 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Process statements
You can use process statements to tailor your comparison or search according to your requirements.
Process statements provide a powerful and flexible way of ensuring that only relevant data is compared
(or searched) and that meaningful results are produced.

Broadly speaking, the two major functions that process statements perform are:
v To select the data that is to be compared (or searched) and,
v To handle various date formats.

All process statements require a keyword followed by one or more operands. They are supplied to
SuperC in the Process Statements File.

Table 26 lists each of the process statement keywords and shows for which compare type each keyword
can be used. The table also shows whether the keyword is valid for the SuperC Search.

Note: The sequence in which each of the process statements is listed (in Table 26 and the pages
following) is primarily alphabetic according to the process statement keyword.

However, in the interest of keeping associated “pairs” and “sets” of process statements together, the
prefixes “N” and “O” (indicating the process statement applies to the new or old file) have been ignored
when sequencing the process statements alphabetically.

Similarly, the three process statements NEWDD, OLDDD, and UPDDD have been kept together and
sequenced according to the “DD” portion of the keyword.

Table 26. Summary of process statements

Process Statement
Valid For

Compare Type
Search

Keyword Description FILE LINE WORD BYTE

NCHGT Change text: new or search file U U U

OCHGT Change text: old file U U

CHNGV Change listing value U U U

CMPBOFS Compare byte offsets U

CMPCOLM Compare (search) columns: new, old, search
files

U U U

CMPCOLMN Compare columns: new file U U

CMPCOLMO Compare columns: old file U U

CMPLINE Compare lines U U U

CMPSECT 1 Compare sections U U

COLHEAD 2 Define column headings U

NEWDD 3 z/VSE DLBL/TLBL Definition: new file, or
z/OS alternate DDNAME

U U U U U

OLDDD 3 z/VSE DLBL/TLBL Definition: old file, or
z/OS alternate DDNAME

U U U U

UPDDD 3 z/VSE DLBL/TLBL Definition: update file,
or z/OS alternate DDNAME

U U U U

DPLINE Do not process lines (containing a string) U U U

DPLINEC Do not process lines continuation U U U

Chapter 6. Using Enhanced SuperC 227

Table 26. Summary of process statements (continued)

Process Statement
Valid For

Compare Type
Search

Keyword Description FILE LINE WORD BYTE

NEXCLUDE 4 Exclude data: new file U U

OEXCLUDE 4 Exclude data: old file U U

NFOCUS 4 Focus on data: new file U U

OFOCUS 4 Focus on data: old file U U

LNCT Line count U U U U U

LPSFV List previous-search-following value U

LSTCOLM List columns U U

REVREF Revision code reference U U

SELECT Select PDS members (z/OS) U U U U U

SELECT Select members/files (CMS) U U U U U

SELECT Select members (z/VSE) U U U U U

SELECTF 5 Select files from a list U U U U U

SLIST Statements listing option U U U U U

SRCHFOR Search for a string U

SRCHFORC Search for a string continuation U

NTITLE Alternative listing title: new file U U U U U

OTITLE Alternative listing title: old file U U U U

NY2AGE Aging option: new file U

OY2AGE Aging option: old file U

NY2C Date definition: new file, character format U

NY2Z Date definition: new file, zoned decimal
format

U

NY2D Date definition: new file, unsigned packed
decimal format

U

NY2P Date definition: new file, packed decimal
format

U

OY2C Date definition: old file, character format U

OY2Z Date definition: old file, zoned decimal
format

U

OY2D Date definition: old file, unsigned packed
decimal format

U

OY2P Date definition: old file, packed decimal
format

U

WORKSIZE Maximum number of units for comparison U U U

Y2PAST Global date option U

* Process Statement comment to be printed U U U U U

.* Process Statement comment not to be
printed

U U U U U

228 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Table 26. Summary of process statements (continued)

Process Statement
Valid For

Compare Type
Search

Keyword Description FILE LINE WORD BYTE

Note:

1. Not supported on CMS.

2. Valid only for listing types DELTA and LONG.

3. Supported only on z/VSE.

4. FILE compare type is valid only with ROWS option of NEXCLUDE, OEXCLUDE, NFOCUS, and OFOCUS.

5. Supported only on CMS.

The following sections describe each process statement in detail.

Change listing value
The CHGNV process statement specifies the number of match lines listed before and after a line with a
change: insert, delete, or reformat.

Compare Types: LINE, WORD, and BYTE

�� CHNGV number ��

number
A decimal number between 1 and 1000.

Example Description
CHNGV 3 Lists up to 3 lines before and after change.

Change text
There are two Change Text process statements:

NCHGT
Change new (or search) input text string

OCHGT
Change old input text string

These process statements change the input source image before performing the comparison.

The relative input file (“new” or “old”) is scanned for text that matches a search_string. If matching text is
found, it is replaced by a corresponding output_string before the comparison process is performed.
Question marks (“?”) may be used as “wildcard” characters in the search_string or output_string.

The search_string and output_string need not be the same length. The output_string may even be a null
string.

Compare Types: LINE, WORD, and Search. OCHGT cannot be used for Search.

Chapter 6. Using Enhanced SuperC 229

�� NCHGT
OCHGT

' search_string ' , ' output_string ' �

�
, start_column

: last_start_column

��

search_string
A character or hexadecimal string to be replaced in the input file. For one embedded apostrophe,
use two consecutive apostrophes ('').

output_string
The replacement string to be used in the comparison. For one embedded apostrophe, use two
consecutive apostrophes ('').

start_column
The column in or after which the search_string must start. Must be greater than zero.

last_start_column
The last column in which the search_string may start. Must be separated from the start_column by
a colon, and must be equal to or greater than the start_column value. If not supplied, is the
equivalent of setting the value to start_column. To search from the start_column to the end of a
variable length row, set the last_start_column to a value larger than the length of the longest row.

Example Description
NCHGT ’ABCD’,’XXXX’ Changes all strings “ABCD” in the new file to “XXXX” before performing the

comparison.
OCHGT ’ABCD’,’XXXX’,1:50 Changes all strings “ABCD” in the old file, that start within columns 1 to 50,

to “XXXX” before performing the comparison.
OCHGT ’ABCD’,’’,1:50 Changes all strings “ABCD” in the old file, that start within columns 1 to 50,

to a null string before performing the comparison. (In the comparison
process, this effectively ignores any “ABCD” strings found in those positions
in the old file.)

NCHGT ’ABCD’,’AB’ Changes all strings “ABCD” in the new file to “AB” before performing the
comparison.

NCHGT X’7B01’,’:1’,6 Changes all hexadecimal strings X'7B01' in the new file, that start in column
6, to the character string “:1” before performing the comparison.

NCHGT ’PREF???’,’NPREF’ Changes all 7-character strings with the prefix “PREF” in the new file, to the
5-character string “NPREF” before performing the comparison.

NCHGT ’PREF???’,’NPREF??’ Changes the first 5 characters of all 7-character strings with the prefix
“PREF” in the new file, to “NPREF” before performing the comparison.

Comment lines
There are two tags that if found at the start of a line turn it into a comment line:

* An asterisk as the first character on a process statement line begins a printable comment line.

.* A period-asterisk as the first two characters on a process statement line begins a comment that is
not printed in the SuperC listing.

Compare Types: FILE, LINE, WORD, BYTE, and Search

230 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

�� *
. *

comment ��

* Must be in column 1.
.* Must be in columns 1 and 2.

Example Description
* This comment prints in the SuperC listing.
.* This comment does not print in the SuperC listing.

Compare byte offsets
The CMPBOFS process statement compares a file between byte limits. The start and stop reference values
must be hex values. The statement may be specified on one complete line or may have separate
CMPBOFS statements for each of the six keyword operands: TOP, BTM, NTOP, NBTM, OTOP, and
OBTM.

Compare Type: BYTE

�� CMPBOFS � TOP hex_offset
BTM
NTOP
OTOP
NBTM
OBTM

��

keyword
The keyword may be one of the following:

TOP Top. Defines the first byte offset position in the new and old byte compare file. Means
both NTOP and OTOP. The lowest byte position is at offset zero.

NTOP New Top. Defines the first byte offset position in the new file for the byte compare.

OTOP Old Top. Defines the first byte offset position in the old file for the byte compare.

BTM Bottom. Defines the last byte position in the new and old byte compare file. Means both
NBTM and OBTM.

NBTM
New Bottom. Defines the ending point in the new file for the compare.

OBTM
Old Bottom. Defines the ending point in the old file for the compare.

hex_offset
A hexadecimal value. Do not put in apostrophes, or 'bracket' it within “X'...'”.

Example Description
CMPBOFS NTOP 1000 OTOP 5E00 Compare the new file from hex offset X'1000' (to the end of file) with the old

file from hex offset X'5E00' (to the end of file).
CMPBOFS NTOP 1000
CMPBOFS OTOP 5E00

These two separate process statements have the same effect as the
“combined” statement above.

Chapter 6. Using Enhanced SuperC 231

Compare (search) columns
There are three Compare Columns process options:

CMPCOLM
Applies to both the new and old files, or search file

CMPCOLMN
Applies to the new file

CMPCOLMO
Applies to the old file

These options compare (or search) the data between column limits of the input files (or search file). Up to
15 compare ranges or individual columns are allowed and may be entered on additional CMPCOLM,
CMPCOLMN, or CMPCOLMO statements. All specified ranges of columns must be in ascending order.

Compare Types: LINE and WORD CMPCOLM is also valid for Search.

Notes:

1. Some process options (SEQ, NOSEQ, and COBOL) also specify columns. The CMPCOLM,
CMPCOLMN, CMPCOLMO process statements override all these process options.

2. CMPCOLM, CMPCOLMN, CMPCOLMO cannot be used for WORD compare type or Search if the
input contains a mixture of DBCS and non-DBCS data.

�� CMPCOLM
CMPCOLMN
CMPCOLMO

�

,

start_column
: end_column

��

start_column
The starting column number to be compared or searched.

end_column
The ending column number of the range of columns to be compared or searched. (Must be
separated from the start_column by a colon.)

Example Description
CMPCOLM 25:75 Compare columns 25 through 75 in both files (or search columns 25 through

75 in the search file).
CMPCOLM 30:60,75 Compare columns 30 through 60 and column 75 in both files (or search

columns 30 through 60 and column 75 in the search file).
CMPCOLMN 48:54 Compare columns 48 through 54 in the new file.
CMPCOLMO 87 Compare column 87 in the old file.

CMPCOLMN 17:22
CMPCOLMO 15:20

Compare columns 17 through 22 in the new file with columns 15 through 20
in the old file.

232 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Compare lines
The CMPLINE process statement compares two files (or search) between line limits. The statement may
be specified on one complete line or may have separate CMPLINE statements for each of the six keyword
operands: TOP, BTM, NTOP, NBTM, OTOP, and OBTM. The reference values may be line numbers or
data strings.

Compare Types: LINE, WORD, and Search

Note: Keyword operands OTOP and OBTM are invalid for Search.

�� CMPLINE � TOP line number
NTOP String operands
OTOP
BTM
NBTM
OBTM

��

String operands:

, ' search_string '
, start_column

: last_start_column

keyword
The keyword may be one of the following:

TOP Top. Defines the beginning line in the new (or search) file and old compare file. Means
both NTOP and OTOP.

NTOP New Top. Defines the beginning line in the new (or search) file.

OTOP Old Top. Defines the beginning line in the old file.

BTM Bottom. Defines the ending line in the new (or search) file and old compare file. Means
both NBTM and OBTM.

NBTM
New Bottom. Defines the ending line in the new (or search) file.

OBTM
Old Bottom. Defines the ending line in the old compare file.

line number
The relative number of the record in the file.

search_string
A character or hexadecimal string enclosed within apostrophes. For one embedded apostrophe,
use two consecutive apostrophes ('').

start_column
The column in or after which the search_string must start.

last_start_column
The last column in which the search_string may start. Must be separated from the start_column by
a colon.

Chapter 6. Using Enhanced SuperC 233

Example Description
CMPLINE TOP 55 BTM 99 Compare from line 55 to line 99 in both files.
CMPLINE NTOP 55 NBTM 99 Compare from line 55 to line 99 in the new file.
CMPLINE NTOP ’ABCD’,5:66 Compare from where “ABCD” starts within columns 5 to 66 in new file (that

is, is found within columns 5 to 69).
CMPLINE OTOP ’ABCD’ Compare from where “ABCD” first found in old file.
CMPLINE TOP X’40E2’,1:1 Compare from where “ S” is found for both files.

Compare sections
The CMPSECT process statement compares multiple sections from one sequential data set or PDS
member to another sequential data set or PDS member. It is not valid for a PDS group comparison of
more than one member. It is functionally similar to CMPLINE but allows you to divide the input into one
or more sections for subsequent comparison or searching. A section ID name is needed to associate all
keyword operands to a particular section. Thus, multiple sections of the input can be compared (or
searched) in a single execution of SuperC.

Compare Types: LINE, WORD, and Search

Notes:

1. CMPSECT is not supported for CMS.
2. Keywords OTOP and OBTM are invalid for Search.

�� CMPSECT section_ID � TOP line_number
NTOP String operands

(1)
OTOP
BTM
NBTM

(1)
OBTM

��

String operands:

, ' search_string '
, start_column

: last_start_column

Notes:

1 Invalid for Search-For.

section_ID
A character string identifier (up to 8 alphanumeric characters, no embedded spaces, can start with
a numeric) relating to a section (group of lines). It allows multiple keywords to be associated
with the same section.

keyword
The keyword may be one of the following:

234 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

TOP Top. Defines the beginning line in the new (or search) file and old compare section. Means
the same as NTOP and OTOP.

NTOP New Top. Defines the beginning line in the new (or search) section.

OTOP Old Top. Defines the beginning line in the old section.

BTM Bottom. Defines the ending line in the new (or search) file and old compare section. Means
both NBTM and OBTM.

NBTM
New Bottom. Defines the ending line in the new (or search) section.

OBTM
Old Bottom. Defines the ending line in the old compare section.

line_number
The line number associated with the keyword.

string A character or hexadecimal string enclosed within apostrophes. For one embedded apostrophe,
use two consecutive apostrophes ('').

start_column
The column in or after which the search_string must start.

last_start_column
The last column in which the search_string may start. Must be separated from the start_column by
a colon.

Note: If a “top” condition is not found (for example, a pattern is incorrect), the compare continues but
normally reports zero lines processed for this data set.

Example Description
CMPSECT SECT01 TOP 25 BTM 50 Compares lines 25 through 50 in both data sets or

members.

CMPSECT SECT02 NTOP 60 NBTM 70
CMPSECT SECT02 OTOP 65 OBTM 75

Compares lines 60 through 70 in the new data set to lines
65 through 75 in the old data set.

CMPSECT SECTX TOP ’PART1:’,2:10
CMPSECT SECTX BTM ’END PART1:’,2:10

Starts the comparison of both data sets when SuperC
detects the string “PART1:” starting in columns 2 through
10 and ends the comparison when SuperC detects the
string “END PART1:” starting in columns 2 through 10.

CMPSECT SECTY NTOP ’PART2:’,2:10
CMPSECT SECTY OTOP ’PART2:’,6:20
CMPSECT SECTY BTM ’END PART2:

Compares a section in the new data set to a section in the
old data set. The section in the new data set begins with
the string “PART2:” in columns 2 through 10 and ends
with the string “END PART2:” in columns 2 through 10.
The section in the old data set begins with the string
“PART2:” in columns 6 through 20 and ends with the
string “END PART2:” in columns 2 through 10.

Note: All the previous statements could be combined to compare multiple sections of the new and old
data sets.

DD-MVS alternate DD names
There are three DD-MVS Alternate DD Names process statements:

NEWDD
Name applies to the new (or search) file

OLDDD
Name applies to the old file

Chapter 6. Using Enhanced SuperC 235

UPDDD
Name applies to the update file

These process statements allow you to specify alternative names for the new and old input files, and for
the output update file. (The default names are NEWDD, OLDDD, and UPDDD.)

Compare Types: FILE, LINE, WORD, and BYTE. NEWDD is also valid for Search.

�� NEWDD
OLDDD
UPDDD

DDname ��

DDname
The name of the DD card to be processed.

Example Description
UPDDD FILE3 Update file is referecenced via DD card with the name FILE3.
NEWDD FILE4 Name of new file DD is FILE4.

DD-VSE DLBL/TLBL definitions
There are three DD-VSE DLBL/TLBL Definitions process statements:

NEWDD
Name applies to the new (or search) file

OLDDD
Name applies to the old file

UPDDD
Name applies to the update file

For z/VSE sequential files, these process statements allow you to specify:
v Alternative names for the new and old input files, and for the output update file. (The default names

are NEWDD, OLDDD, and UPDDD.)
v The file attributes for the new and old input files. (The default attributes are: non-VSAM, fixed,

unblocked, record size 80).

For z/VSE Librarian members, these process statements allow you to select members from the new and
old sublibraries.

Notes:

1. NEWDD, OLDDD, and UPDDD process statements as discussed in this section apply to z/VSE only.
See also “DD-MVS alternate DD names” on page 235.

2. When NEWDD is used in the SuperC Search, references to the “new” file in the following pages
indicate the search file.

3. For more information about the Job Control Language (JCL) required for the new (or search), old, and
update files, see “Invoking the comparison on z/VSE” on page 193 and “Invoking the search on
z/VSE” on page 213.

z/VSE (disk) files
If the input is a SAM file not managed by VSAM, the BLKSIZE, RECSIZE, and RECFORM values are
required (otherwise the default file attributes apply).

236 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

In the case of a VSAM-managed SAM file, the file attributes are normally checked for in the VSAM
catalog. However, if the attributes are supplied via this statement, the VSAM catalog definitions are
ignored.

For native VSAM files (KSDS, ESDS, RRDS, VRDS), the catalog attributes are always used.

For fixed files, the block size, record size, and record format are used for deblocking and memory
allocation.

For variable files, the blocksize allocates enough memory to hold a full block, and the record size is not
required.

The file attributes for the output update file are determined by the type of update process option that is
used (see “Process options” on page 216).

z/VSE (tape) files
If the input is a tape file, it can have standard labels or it can be unlabeled. If the file attributes are not
supplied via the NEWDD or OLDDD statement, they are assumed to be: fixed length, unblocked, record
size 80.

z/VSE librarian members
When using the NEWDD or OLDDD process statement for z/VSE libraries, the library and sublibrary
must be defined.

The NEWDD and OLDDD process statements can be used to:
v Specify just the Librarian library and sublibrary, then:

– Select individual members by using SELECT process statements (for further details, see “Select
members (z/VSE)” on page 248).

– Select the whole sublibrary (by not using SELECT process statements).
v Select an individual member by specifying the Librarian library, sublibrary, member name, and

member type.
v Select a group of members by using the wildcard character “*” (asterisk) in either the member name or

the member type (or both). See the following for a more detailed description of the way in which
groups of members can be selected.

Using the wildcard character to select groups of members
You can use a “*” as a generic indicator as part of the member name or member type (or both) to select a
group of members for subsequent input to either the SuperC Comparison or the SuperC Search. The “*”
may only be used at the beginning (prefix) or the end (suffix) of the member name or member type.

Examples:

Member Name Member Type Members Selected (Member Name and Type shown only)
MEM1 TYPA MEM1.TYPA (Selection of a single member)
MEM* TYPA All members with a name starting with “MEM” and a type of “TYPA”
MEM* * All members with a name starting with “MEM” regardless of type
MEM TYP All members with a name ending with “MEM” and a type starting with

“TYP”
MEM *TYP* Invalid use of wildcard character; can only be used as a prefix or a suffix to

the same item
* * All members (in the sublibrary of the Librarian library)

Note: When using the NEWDD and OLDDD process statements with wildcard (“*”) characters to select
a new group of members for comparison with an old group of members, be aware of the way in which
individual members (within each group) are “paired” by SuperC for subsequent comparison.

Chapter 6. Using Enhanced SuperC 237

SuperC “pairs” members from each (sorted) group:
v According to the portion of the member name or member type which was represented by the “*”

wildcard character (when SuperC initially selected the members for inclusion in the group), and
v Ignoring the remainder of the member name or member type

For example, if you specified a member name of ABC1* in the NEWDD process statement (to select all
new members with names starting with “ABC1”), and a member name of XYZ* in the OLDDD process
statement (to select all old members with names starting with “XYZ”), it could result in:

library.sublibrary.ABC11.type

being compared with
library.sublibrary.XYZ1.type

which may not be what you wanted.

If you find that members are not being “paired” as you want, use SELECT process statements to specify
each individual pair of members that you want compared.

Compare Types: FILE, LINE, WORD, and BYTE. NEWDD is also valid for Search.

�� NEWDD
OLDDD

DLBL_name Attributes
TLBL_name

lib . sublib
. SOURCE

. member_name
. member_type

��

Attributes:

, BLKSIZE = 80 , RECSIZE = 80 , RECFORM = FU

, BLKSIZE = block_size , RECSIZE = record_size , RECFORM = VU
VB
FU
FB

�� UPDDD DLBL_name ��

DLBL_name
Your own choice of DLBL name for the new, old, or update file.

TLBL_name
Your own choice of TLBL name for the new or old file.

lib.sublib
Library and sublibrary names. (Librarian members only.)

member_name
Name of the member in the sublibrary.

238 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

member_type
Member type of the member in the sublibrary.

block_size
The block size of the new or old file.

record_size
The record size of the new or old file.

Note: For variable-length records, this must be the maximum record length.

RECFORM=
The record format of the new or old file:
VU Variable, unblocked
VB Variable, blocked
FU Fixed, unblocked
FB Fixed, blocked

Example Description
NEWDD FILE1,BLKSIZE=160,RECSIZE=80,RECFORM=FB Name of new file is FILE1 with a block size of

160, and fixed blocked records of length 80.
OLDDD FILE2,BLKSIZE=120,RECSIZE=120,RECFORM=FU Name of old file is FILE2 with fixed

unblocked records of length 120.
UPDDD FILE3 Name of update file is FILE3.
NEWDD FILE4 Name of new file is FILE4 with (default file

attributes) fixed unblocked records of length
80.

NEWDD MAINLIB.LIBA.MEMB1.C Selects new member MEMB1 (with a member
type of C) in sublibrary LIBA, in library
MAINLIB.

OLDDD MAINLIB.LIBA.MEMB*.C Selects all old members with a member name
starting with “MEMB” (and with a member
type of C) in sublibrary LIBA, in library
MAINLIB.

NEWDD MAINLIB.LIBA.*.C Selects all new members with a member type
of C in sublibrary LIBA, in library MAINLIB.

Define column headings
The COLHEAD process statement defines column headings and specifies the location and format of the
corresponding data to be displayed. For an example of a listing with column headings, see Figure 87 on
page 265.

Note: COLHEAD is not available for side-by-side listings. (See “NARROW” process option).

Compare Type: LINE

Chapter 6. Using Enhanced SuperC 239

�� COLHEAD ' heading1 ' ,
' heading2 '

, start_print_column : end_print_column , �

�
(1)

N start_column : last_start_column
(2) C

B
D
P
Z

�

�
(1) (2) C

, O start_column : last_start_column
B
D
P
Z

��

Notes:

1 N and O must be followed by a space.

2 C, B, D, P, or Z must be preceded by a space.

heading1
The heading to appear on the first line for the print column.

heading2
The heading to appear on the second line for the print column.

start_print_column
The starting print column for the heading specified.

end_print_column
The ending print column for the heading specified. (Must be separated from the
start_print_column by a colon.)

Note: If the print-column range is shorter than the heading specified, the heading is truncated.

N Indicates the operands following relate to the new file.

start_column
The starting position in the new file of the data to be displayed.

last_start_column
The ending position in the new file of the data to be displayed. (Must be separated from the
start_column by a colon.)

Data Format Indicator
The format of the data in the new file to be displayed:
C Character
B Binary
D Unsigned packed decimal
P Packed decimal
Z Zoned decimal

O Indicates the operands following relate to the old file.

240 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

start_column
The starting position in the old file of the data to be displayed.

last_start_column
The ending position in the old file of the data to be displayed. (Must be separated from the
start_column by a colon.)

Data Format Indicator
The format of the data in the old file to be displayed (as for the new file).

Example Description
COLHEAD ’START’,’DATE’,1:7,N 1:6 P,O 11:16 Defines a print column with a heading of “START”

in the first line and “DATE” in the second heading
line, headings to start in print column 1. The data
to be displayed from the new file is in positions 1
through 6 and is in packed format. The data to be
displayed from the old file is in positions 11
through 16 and is in (the default) character format.

Do not process lines
There are two Do Not Process Lines process statements:

DPLINE
Do not Process Lines

DPLINEC
Do not Process Lines Continuation

These options remove from the compare (or search) set all lines that can be recognized by either a unique
character string or combination of related strings all appearing on the same input line. DPLINEC is the
continuation of the immediately preceding DPLINE or DPLINEC process statement. All the strings in a
DPLINE/DPLINEC group must be found on the same input line.

A start_column or start-range can also be used to restrict the columns. Relative start_columns and
start-ranges are valid only on DPLINEC statements.

Compare Types: LINE, WORD, and Search

�� DPLINE ' string '
, start_column

: last_start_column

��

�� DPLINEC ' string '
, start_column

: last_start_column
, + start_column

: last_start_column
, +

��

string A character or hexadecimal string enclosed within apostrophes. For one embedded apostrophe,
use two consecutive apostrophes ('').

Chapter 6. Using Enhanced SuperC 241

start_column
The column in, or after which, the string must start.

last_start_column
The last column in which the string may start. (Must be separated from the start_column by a
colon.)

+start_column
The relative column, following the location of the previous string (as specified in the previous
DPLINE or DPLINEC statement), in, or after which, this string must start.

last_start_column
The relative last column, following the location of the previous string (as specified in the previous
DPLINE or DPLINEC statement), in which this string may start.

+ The specified string may appear anywhere following the location of the previous string (as
specified in the previous DPLINE or DPLINEC statement).

Example Description
DPLINE ’ABCDE’ Scans all columns for string “ABCDE”
DPLINE ’AbCde’,2 Scans only column 2 for start of string “AbCde”
DPLINE ’AbCde’,2:2
DPLINEC ’BDEF’

Same as above example. String “BDEF” must be on the same line as the
string “AbCde”

DPLINE ’ABCDE’,2:50 Scans only columns 2 through 50 for start of string “ABCDE”
DPLINE ’AB’’CD’,2:50 Scans only columns 2 to 50 for start of string “AB'CD”
DPLINE X’C1C27BF1’,2:50 Scans only columns 2 to 50 for start of hexadecimal string X'C1C27BF1'
DPLINE ’ABC’
DPLINEC ’BDEF’,+

Scans for string “ABC”; if found, then scans for string “BDEF” in the same
line (following “ABC”)

DPLINE ’ABC’
DPLINEC ’BDEF’,+5

Scans for string “ABC”; if found, then scans for string “BDEF” starting in the
5th column after the starting column of “ABC”

DPLINE ’ABC’
DPLINEC ’BDEF’,+5:12

Scans for string “ABC”; if found, then scans for string “BDEF” starting
anywhere in the 5th to 12th columns after the starting column of “ABC”

Exclude data
There are two Exclude Data process statements:

NEXCLUDE
Exclude applies to the new file

OEXCLUDE
Exclude applies to the old file

These statements exclude rows or columns of data from the comparison. Up to 254 “exclude” statements
can be entered for each file.

Notes:

1. NEXCLUDE and OEXCLUDE statements are mutually exclusive to NFOCUS and OFOCUS statements
if using the same operand keyword (ROWS or COLS).

2. Do not use the NEXCLUDE or OEXCLUDE process statement if the Y2DTONLY process statement
has been specified.

Compare Types: FILE (ROWS option only) and LINE

242 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

�� NEXCLUDE
OEXCLUDE

ROWS
COLS

start_position : end_position ��

start_position
If ROWS operand used, the first row (record) to be excluded from the comparison. If COLS
operand used, the first column to be excluded from the comparison.

end_position
If ROWS operand used, the last row (record) to be excluded from the comparison. If COLS
operand used, the last column to be excluded from the comparison. (Must be separated from the
start_position by a colon.)

Example Description
NEXCLUDE ROWS 5:900 Excludes rows (records) 5 through 900 on the new file.
OEXCLUDE ROWS 1:900 Excludes rows (records) 1 through 900 on the old file.
OEXCLUDE COLS 100:199 Excludes columns 100 through 199 on the old file.

Focus on data
There are two Focus on Data process statements:

NFOCUS
Focus applies to the new file

OFOCUS
Focus applies to the old file

These two statements select (or “focus on”) rows or columns of data to be compared. In other words,
only these rows or columns are considered when performing the comparison (or search) process and all
other rows or columns are ignored. Up to 254 “focus” statements can be entered for each file.

Notes:

1. NFOCUS and OFOCUS statements are mutually exclusive to NEXCLUDE and OEXCLUDE statements
if using the same operand keyword (ROWS or COLS).

2. Do not use the NFOCUS or OFOCUS process statement if the Y2DTONLY process statement has been
specified.

Compare Types: FILE (ROWS option only) and LINE

�� NFOCUS
OFOCUS

ROWS
COLS

start_position : end_position ��

start_position
If ROWS operand used, the first row (record) to be selected for the comparison. If COLS operand
used, the first column to be selected for the comparison.

end_position
If ROWS operand used, the last row (record) to be selected for the comparison. If COLS operand
used, the last column to be selected for the comparison. (Must be separated from the start_position
by a colon.)

Chapter 6. Using Enhanced SuperC 243

Example Description
NFOCUS ROWS 28:90 Selects rows (records) 28 through 90 on the new file.
OFOCUS ROWS 150:165 Selects rows (records) 150 through 165 on the old file.
OFOCUS COLS 10:18 Selects columns 10 through 18 on the old file.

Line count
The LNCT process statement specifies the number of lines per page in the listing file.

Compare Types: FILE, LINE, WORD, BYTE, and Search

�� LNCT number ��

number
A decimal number between 15 and 999999.

Example Description
LNCT 55 Lists up to 55 lines per page.

List columns
The LSTCOLM process statement selects a range of columns to be listed in the output. This statement
overrides the defaults that SuperC generates. Column selections must be contiguous and can be no wider
than the output listing line allocated (55/80/106/176).

Compare Types: LINE and Search

�� LSTCOLM start_column : last_start_column ��

start_column
The starting column to be listed.

last_start_column
The ending column to be listed. (Must be separated from the start_column by a colon.)

Example Description
LSTCOLM 275:355 Lists columns 275 through 355 in the output.

List previous-search-following value
The LPSFV process statement specifies the number of lines preceding and following the search line found
to be listed. The default value is 6.

Compare Type: Search

�� LPSFV number ��

244 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

number
A decimal number between 1 and 50.

Example Description
LPSFV 2 Lists up to 2 lines before and after the line found.

Revision code reference
The REVREF process statement identifies the revision type (BookMaster or SCRIPT/VS) and level-ID for
delimiting UPDREV and UPDREV2 output changes. The revision delimiter may, alternatively, be specified
or indicated by using a SCRIPT/VS .rc definition statement as the first line of the new input file.

If either the UPDREV or UPDREV2 process option is specified and no REVREF process statement is in
the statements file, or the first new file source line is not a .rc script definition statement, SuperC defaults
the revision definition to a SCRIPT/VS specification of .rc 1 |.

Note: BookMaster requires the REFID value to be defined with a :revision tag. Do not forget the
“RUN=YES” attribute if you want your document to have the change-bar inserted in the processed
document.

Compare Types: LINE and WORD

�� REVREF REFID = name
RCVAL = number

��

REFID=name
Name of the revision identifier for the BookMaster :rev/:erev. tags.

RCVAL=number
Numeric revision code for SCRIPT/VS revision tags.

Example Description
REVREF REFID=ABC BookMaster example :rev refid=ABC. and :erev refid=ABC. tags.
REVREF RCVAL=5 SCRIPT/VS example .rc 5 on/off delimiters.

Search strings in the input file
There are two process options to search for strings in the input file:

SRCHFOR
Search a text string in the input file

SRCHFORC
Search a text string continuation

These statements search for a specified string in the input Search file. The string may be further qualified
as a word, prefix, or suffix, and where it must be positioned on the line.

SRCHFORC is the continuation of the immediately preceding SRCHFOR or SRCHFORC process
statement. In the case of a SRCHFOR/SRCHFORC group, all the specified strings must occur on the
same line for the search to be successful.

Compare Type: Search

Chapter 6. Using Enhanced SuperC 245

�� SRCHFOR ' string '
, W
, P
, S

, start_column
: last_start_column

��

�� SRCHFORC ' string '
, W
, P
, S

, start_column
: last_start_column

, + start_column
: last_start_column

, +

��

string The character or hexadecimal string to be searched for (enclosed by apostrophes). Use two
consecutive apostrophes ('') for one apostrophe within the search string.

W Word. String must appear as a separate word. That is, be delimited by one or more spaces or
special characters.

P Prefix. String must appear as the first part of some other text.

S Suffix. String must appear as the last part of some other text.

start_column
The column in which the string must start for the search to be successful. (If a last_start_column is
also specified, see description for that operand.)

last_start_column
The “latest” column in which the string can start for the search to be successful. (Must be
separated from the start_column by a colon.)

+start_column
The relative column (starting from the column where the string for the previous
SRCHFOR/SRCHFORC was found) in which the string must start for the search to be successful.
(A corresponding last_start_column operand can be specified in a similar way to that for the
start_column.)

+ The string specified can occur anywhere after the position of the previously found string for the
search to be successful.

Example Description
SRCHFOR ’ABC’ Searches for string “ABC”
SRCHFOR ’ABC’,W Searches for the word “ABC”
SRCHFOR X’4004’ Searches for the hexadecimal string X'4004'
SRCHFOR ’A’’bc’ Searches for string “A'bc”
SRCHFOR ’ABC’,5:10 Searches for string “ABC” starting in positions 5 to 10
SRCHFOR ’ABC’,W,5 Searches for the word “ABC” starting in position 5

SRCHFOR ’ABC’
SRCHFORC ’DEF’

Searches for strings “ABC” and “DEF” in any order in the same line.

SRCHFOR ’ABC’
SRCHFORC ’DEF’,+

Searches for the string “DEF” following the string “ABC”

SRCHFOR ’ABC’
SRCHFORC ’DEF’,W,+

Searches for the word “DEF” following the string “ABC”

246 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Example Description
SRCHFOR ’ABC’
SRCHFORC ’DEF’,+5

Searches for the string “DEF” in the 5th position after the string “ABC”

SRCHFOR ’ABC’
SRCHFORC ’DEF’,+5
SRCHFORC ’GKL’

Searches for the string “DEF” in the 5th position after the string “ABC” with
the string “GKL” also anywhere in the same line

Select files from a list of files (CMS)
The SELECTF process statement (for CMS) selects file pairs to be compared or a single file to be searched.
The SELECTF process statement overrides the source file names from the Primary Compare Menu or the
names specified on the CMS command line.

A single SELECTF process statement may contain a “wildcard” character (“*”) anywhere in the filename
or filetype. (For new and old files, the “*” must be used in exactly the same way.) Multiple SELECTF
process statements may have an “*” only as the file mode (fm) part of the file ID.

Compare Types: FILE, LINE, WORD, BYTE, and Search

�� SELECTF new_file_ID old_file_ID
search_file_ID

��

new_file_ID
Fully qualified new file ID: fn ft fm.

old_file_ID
Fully qualified old file ID: fn ft fm.

search_file_ID
Fully qualified search file ID: fn ft fm.

Example Description
SELECTF NEW1 TEST A OLD1 TEST A Selects files NEW1 TEST A and OLD1 TEST A for

comparison with each other.
SELECTF NEW1 TEST * OLD1 TEST * Selects the group of files NEW1 TEST (all file modes) for

comparison with the group of files OLD1 TEST (all file
modes). Files compared according CMS order.

SELECTF NEW* TEST A OLD* TEST A Selects the group of files with file names beginning with
“NEW” (and file type TEST and file mode A) for
comparison with the group of files with file names
beginning with “OLD” (and file type TEST and file mode
A). (Valid for single SELECTF statement only.)

SELECTF NEW* TEST A OLD TEST* A Invalid use of “wildcard” character. (“*” must be used in
exactly the same way for both files.)

SELECTF NEW1 TEST* A (Example of SELECTF being used for search.) Selects the
group of files with file name NEW1, file type beginning
with “TEST” and file mode of A.

Select members or files (CMS)
The SELECT process statement (for CMS) selects members from a macro library (MACLIB) or a text
library (TXTLIB), or selects files with a file ID specified as “* ft fm” for comparison or for being searched.
You can specify as many member/file names as fit on one line. If you need to select additional
members/files, enter a new SELECT statement.

Chapter 6. Using Enhanced SuperC 247

For comparisons, the new members/files are normally compared with old members/files that have the
same names. Use the colon character (:) to compare members/files that are not named alike.

Any number of SELECT statements may be specified.

Compare Types: FILE, LINE, WORD, BYTE, and Search

�� SELECT �

,

new_name : old_name
new_name
search_name

��

new_name
The name of a new member/file that is to be compared to an old member/file.

old_name
The name of an old member/file that does not have a like-named member/file in the new
MACLIB/TXTLIB or file group. This member/file name, if entered, must be separated from the
new_name name by a colon (:).

If the old_name name is not used, SuperC attempts to compare the new_name to a like-named
member/file of the old MACLIB/TXTLIB or file group.

search_name
The name of the member/file that is to be searched.

Example Description
SELECT NEW1,NEW2 For a MACLIB/TXTLIB:

For a comparison, compares member NEW1 from the new MACLIB/TXTLIB
with the member NEW1 from the old MACLIB/TXTLIB and compares
member NEW2 from the new MACLIB/TXTLIB with the member NEW2
from the old MACLIB/TXTLIB.

For a search, selects members NEW1 and NEW2 from the MACLIB/TXTLIB
to be searched.

For a “* ft fm” file group:

For a comparison, compares file name NEW1 from the new file group with
the file name NEW1 from the old file group and compares file name NEW2
from the new file group with the file name NEW2 from the old file group.

For a search, selects file names NEW1 and NEW2 from the file group to be
searched.

Select members (z/VSE)
The SELECT process statement (for z/VSE) selects members from a sublibrary of a Librarian library for
comparison or for being searched. You can specify as many member names as fit on one line. If you need
to select additional members, enter a new SELECT statement.

Note: The names of the Librarian library and sublibrary (from which the members are to be selected)
must be specified using NEWDD and OLDDD process statements (see “DD-VSE DLBL/TLBL definitions”
on page 236).

248 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

For comparisons, the new members are normally compared with old members that have the same names.
Use the colon character (:) to compare members that are not named alike.

Any number of SELECT statements may be specified.

Compare Types: FILE, LINE, WORD, BYTE, and Search

�� SELECT �

,

new_member . member_type : old_member . member_type
new_member . member_type
search_member . member_type

��

new_member.member_type
The name of a member and its member type in the sublibrary of the Librarian library in the new
file that is to be compared to a member in the old file.

old_member.member_type
The name of a member and its member type in the sublibrary of the Librarian library in the old
file that does not have a like-named member in the new file. This member name and member
type, if entered, must be separated from the new_member name and member type by a colon (:).

If the old_member name is not used, SuperC attempts to compare the new_member to a like-named
member in the sublibrary of the Librarian library in the new file.

search_member.member_type
The name of a member and its member type in the sublibrary of the Librarian library that is to be
searched.

Example Description
SELECT NEW1.C,NEW2.C,NEW3.C For a comparison, compares member NEW1.C from the sublibrary of the

Librarian library of the new file with the member NEW1.C from the
sublibrary of the Librarian library of the old file, compares member NEW2.C
from the sublibrary of the Librarian library of the new file with the member
NEW2.C from the sublibrary of the Librarian library of the old file and
compares member NEW3.C from the sublibrary of the Librarian library of
the new file with the member NEW3.C from the sublibrary of the Librarian
library of the old file.

For a search, selects members NEW1.C, NEW2.C, and NEW3.C from the
sublibrary of the Librarian library to be searched.

SELECT NEW1.C:OLD1.C,MEMBER2.C Compares member NEW1.C from the sublibrary of the Librarian library of
the new file with the member OLD1.C from the sublibrary of the Librarian
library of the old file and compares member MEMBER2.C from the sublibrary
of the Librarian library of the new file with the member MEMBER2.C from
the sublibrary of the Librarian library of the old file.

Select PDS members (z/OS)
The SELECT process statement (z/OS) selects members from a PDS for comparison or for being searched.
You can specify as many member names as fit on one line. If you need to select additional members,
enter a new SELECT statement.

For comparisons, the new members are normally compared with old members that have the same names.
Use the colon character (:) to compare members that are not named alike.

Chapter 6. Using Enhanced SuperC 249

Any number of SELECT statements may be specified.

Compare Types: FILE, LINE, WORD, BYTE, and Search

�� SELECT �

,

new_member : old_member
new_member
search_member

��

new_member
The name of a new PDS member that is to be compared to an old PDS member.

old_member
The name of an old PDS member that does not have a like-named member in the new PDS. This
member name, if entered, must be separated from the new_member name by a colon (:).

If the old_member name is not used, SuperC attempts to compare the new_member to a like-named
member of the old PDS.

search_member
The name of the PDS member that is to be searched.

Example Description
SELECT NEW1,NEW2 For a comparison, compares member NEW1 from the new PDS with the

member NEW1 from the old PDS and compares member NEW2 from the new
PDS with the member NEW2 from the old PDS.

For a search, selects members NEW1 and NEW2 from the PDS to be
searched.

SELECT NEW1:OLD1,MEMBER2 Compares member NEW1 from the new PDS with the member OLD1 from
the old PDS and compares member MEMBER2 from the new PDS with the
member MEMBER2 from the old PDS.

Statements file listing control
The SLIST process statement turns the printing of process statements in the output listing on and off.

The initial setting of this control is ON.

Compare Types: FILE, LINE, WORD, BYTE, and Search

�� SLIST ON
OFF

��

ON Causes the lines in the process statements file following the SLIST statement to be listed in the
output listing.

OFF Causes the lines in the process statements file following the SLIST statement to be suppressed in
the output listing.

250 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Example Description
SLIST OFF Do not list following process statements.
SLIST ON List following process statements.

Title alternative listing
There are two process statements that let you provide an alternative title:

NTITLE
New (or search) listing file title identification

OTITLE
Old listing file title identification

These statements allow an alternative file identification to be used in the output listing (instead of the
default identifiers “New File ID” and “Old File ID”).

Compare Types: FILE, LINE, WORD, BYTE, and Search (NTITLE only)

�� NTITLE
OTITLE

' title_name ' ��

title_name
The alternative title to be used on the output listing to identify either the “new” file (NTITLE) or
the “old” file (OTITLE). The title name must be in apostrophes and may be up to 54 characters in
length. Use two consecutive apostrophes for one apostrophe within the title name.

Example Description
NTITLE ’New Title’ Change title heading for new (or search) file to “NEW TITLE”
OTITLE ’Old Title’ Change title heading for old file to “OLD TITLE”

Work size
The WORKSIZE process statement allows the maximum size of the comparison set to be adjusted for
comparing large files.

If WORKSIZE exceeds 99999, then the SuperC LINE comparison DELTA listing type may result in wider
columns for LEN N-LN# and O-LN#. Typically, these columns contain 5-digit values. However, when
WORKSIZE exceeds 5 digits, and providing the standard record length of the listing is not affected, the
columns are extended to contain 7-digit values. If the length of the input source lines in the listing are
such that 7-digit values cannot fit, the report outputs 5-digit values by default, and only reports 7-digit
values when significant characters are otherwise lost.

Compare Type: FILE, LINE, WORD, BYTE. It is ignored if specified on a SEARCH.

�� WORKSIZE
32000

max_size
��

max_size
The maximum number of units for comparison. Maximum value is 9999999.

Chapter 6. Using Enhanced SuperC 251

Year aging
There are two process statements for year aging:

NY2AGE
Aging applies to the new file

OY2AGE
Aging applies to the old file

These statements age all the defined dates in either the new or old file. That is, the number of years
specified is added to the “year” portion of each defined date in the file concerned.

Note: Dates are defined by the Date Definition process statements NY2C, NY2Z, NY2D, NY2P, OY2C,
OY2Z, OY2D, and OY2P; see “Date definitions.”

Compare Type: LINE

�� NY2AGE
OY2AGE

years ��

years A number (0 to 999) indicating the number of years by which all defined dates in the file are to
be aged.

Example Description
OY2AGE 28 Ages all defined dates in the “old” file by 28 years before being compared.

The listing shows the original date. For example, a defined date in the “old”
file with a value equating to March 1, 1997, is aged to March 1, 2025 before
being compared to its equivalent in the “new” file.

Date definitions
There are eight process statements that set date definitions:
NY2C New file, date in character format
NY2Z New file, date in zoned decimal format
NY2D New file, date in unsigned packed decimal format
NY2P New file, date in packed decimal format
OY2C Old file, date in character format
OY2Z Old file, date in zoned decimal format
OY2D Old file, date in unsigned packed decimal format
OY2P Old file, date in packed decimal format

Notes:

1. If any Date Definition process statements are used, also use a Y2PAST process statement, so that the
“century” portion of the date can be determined where necessary. (If a Y2PAST process statement is
not present, a default fixed window based on the current year is used.)

2. For a description of each date format (character, zone, decimal, and packed), see “Date formats
(keyword suffixes: C, Z, D, P)” on page 254.

3. If any Date Definition process statements are used, an information line is generated on the listing
output (see Figure 86 on page 264).

4. Do not use any Date Definition process statements if using the COLHEAD process statement.

252 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Defines the location and format of a date field on the input file. Up to 254 date definition statements can
be entered for each file. The matching of the new to the old dates is performed according to the sequence
that the statements are entered. That is, the first defined old date is matched to the first defined new date.

If the number of date definition statements for one file differ from the number of date definition
statements for the other file, the location and format details for the “missing” date definition statements
are assumed to be the same as their counterpart date definition statements for the other file.

Compare Type: LINE

�� NY2C
NY2Z
NY2D
NY2P
OY2C
OY2Z
OY2D
OY2P

� start_column : last_start_column date_format
(1)

EMPTY

��

Notes:

1 The EMPTY keyword, when used, must be preceded by a space

start_column
The first position of the date in the input file.

last_start_column
The last position of the date in the input file. (Must be separated from the start_column by a
colon.)

date_format
A mask representing the format of the date.

For a Julian date, the mask must be either YYDDD or YYYYDDD.

For date formats other than Julian, the mask must contain 2 “D”s (representing the day part of
the date field), 2 “M”s (representing the month), and either 2 or 4 “Y”s (representing the year) or,
if the date contains a year only, it must contain either 2 or 4 “Y”s.

If the date is character, there may also be a separator between the different parts. In this case, you
can represent the position of the separators by one of the following:

S (indicates that this position within the date is not used in comparison)
. (period, used in comparison)
/ (forward slash, used in comparison)
: (colon, used in comparison)

Note: The length of the date_format mask must correspond to the length of the date in the input
file as indicated by the values of start_column and last_start_column.

EMPTY
This keyword is optional. If it is entered, the defined date field is checked for containing zeros,
spaces, low-values, or high-values before commencing the comparison process. If any of these
values are found, the date is not converted according to the Y2PAST criteria but instead is

Chapter 6. Using Enhanced SuperC 253

converted to an extended format with the initial value. For example, a date defined by the
process statement OY2C YYMMDD which contains all zeros is compared as “YYYYMMDD” with a
value of zeros.

Example Description
NY2C 1:8 MMDDYYYY 9:16 MMDDYYYY 21:28 YYYYMMDD The new file has dates in character

format in columns 1 to 8, 9 to 16 and
21 to 28.

OY2P 5:8 YYMMDD 9:12 YYMMDD The old file has dates in packed
decimal format in columns 5 to 8 and
9 to 12.

OY2P 101:104 MMDDYY The old file has a date in packed
decimal format in columns 101 to 104,

NY2Z 101:108 YYYYMMDD The new file has a date in zoned
decimal format in columns 101 to 108.

NY2C 101:110 YYYY.MM.DD The new file has a date in character
format (with separators) in columns
101 to 110.

OY2C 93:98 DDMMYY EMPTY The old file has a date in character
format in columns 93 to 98. If the date
field contains zeros, spaces,
low-values, or high-values, the date in
the old file is converted before being
compared to an extended format
(DDMMYYYY) with a value of all
zeros, spaces, low-values, or
high-values.

Date formats (keyword suffixes: C, Z, D, P)
C Character date data.

Examples:
'96' is represented as hexadecimal X'F9F6'
If using a MMDDYY format, March 21, 1996 is represented as hexadecimal X'F0F3F2F1F9F6'

Z Zoned decimal date data. The date can be represented as follows:

X'xyxy' to X'xyxyxyxyxyxyxyxy'

y is hexadecimal 0 to 9 and represents a date digit. x is hexadecimal 0 to F and is ignored.

Examples:
'96' is represented as hexadecimal X'F9C6' or X'0906'
'03211996' is represented as hexadecimal X'F0F3F2F1F1F9F9C6' or X'0003020101090906'

P Packed decimal date data. The date can be represented as follows:

X'zyyx' to X'zyyyyyyyyx'

y is hexadecimal 0 to 9 and represents a date digit. x is hexadecimal A to F and is ignored. The z part
is normally zero but is not ignored.

Examples:
'96' is represented as hexadecimal X'z96F' or X'z96C'
'1996' is represented as hexadecimal X'z1996C'
'03211996' is represented as hexadecimal X'z03211996x' (the x part is ignored).
'96203' (a Julian date) is represented as hexadecimal X'96203C'

D Unsigned packed decimal date data. The date can be represented as follows:

254 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

'yy' to 'yyyyyyyy'

y is hexadecimal 0 to 9 and represents a date digit.

Examples:
'96' is represented as hexadecimal X'96'
'03211996' is represented as hexadecimal X'03211996'

Global date
The Y2PAST process statement specifies a 100-year period (used for determining the century-part of a
date when only a 2-digit year has been specified). The Y2PAST process statement uses either a fixed or
sliding window.

Note: Always use the Y2PAST process statement if one of the Date Definition process statements (NY2C,
NY2Z, NY2D, NY2P, OY2C, OY2Z, OY2D, OY2P) has also been used.

Compare Type: LINE

�� Y2PAST fixed
sliding

��

fixed A 4-digit number indicating a fixed window.
sliding

A 1-digit or 2-digit number indicating a sliding window.

Example Description
Y2PAST 1986 A fixed window specifying a 100-year period from 1986 to 2085.
Y2PAST 70 A sliding window specifying (based on the current year being 2001) a

100-year period from 1931 (70 years in the past) to 2030.
Y2PAST 5 A sliding window specifying (based on the current year being 2001) a

100-year period from 1996 (5 years in the past) to 2095.

CMS command line option directives
Command option directives are options that the SuperC EXEC intercepts and interprets. They are not
passed to the SuperC program as parameters like process options.

ERASRC0
Erase the listing file if the return code from the SuperC program is zero (that is: for a compare,
the files were the same; for a search, no matches were found).

Note: If you do not specify the ERASRC0 command line option directive, a listing file is
generated (unless you have used the NOLIST listing type) even when the return code is zero.

MENU
Display the Primary Comparison Menu after accepting the input parameter list. The options on
the CMS command line are verified and put into the proper fields of the Primary Comparison
Menu. This allows you to use SuperC menu mode from FILELIST and also uses the Options List
file.

Note:

1. If you do not specify the MENU command line option directive, SuperC performs the
comparison immediately you press Enter.

Chapter 6. Using Enhanced SuperC 255

2. The MENU line command option directive does not apply to the SuperC Search.

NOIMSG
No information messages. Do not generate information messages. Warning and error messages
should still be displayed.

NONAMES
The SUPERC NAMES * file is not to be used in determining the options to be sent to the SuperC
Comparison.

Notes:

1. The NONAMES line command option directive does not apply to the SuperC Search.
2. Refer to “Command line priority and overriding” on page 192.

NOOLF
The default-named Options List file is not to be used in determining the options to be sent to
SuperC.

Notes:

1. For comparisons, the default name for the Options List file is SUPERC OLIST A
2. For searches, the default name for the Options List file is SRCHFOR OLIST A
3. NOOLF only suppresses the use of the default-named Options List file. If you have entered

the OLF keyword on the CMS command line (to specify your own-named Options List file)
and you have also entered NOOLF, any options contained in your own-named Options List
file are still used.

PRINT
Print the comparison results.

CMS command line statement option directives
Command line statement option directives are options that are interpreted and transformed into SuperC
process statements. (The newly created process statements are passed to SuperC in the temporary control
file, SUPERC $SYSIN$ A.)

For a full description of each process statement, see “Process statements” on page 227.

CC Compare Columns. This is the command line directive for the Compare Columns (CMPCOLM)
process statement. It allows you to select specified columns of data (by entering either single
column numbers or ranges of column numbers) to be compared from each file or to be searched
from the search file. Up to 15 separate single column numbers and column ranges can be
specified.

�� �

,

CC (column_number)
start_column : last_start_column

��

column_number
The single-column to be compared or searched.

start_column
The starting column to be compared or searched.

256 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

last_start_column
The ending column to be compared or searched. (Must be separated from the start_column
by a colon.)

Example
Description

ASMFSUPC...(CC(2:75)...
Compare columns 2 to 75 in both files (or search those columns in the search file).

ASMFSUPC...(CC(1:10,25:45,75)...
Compare columns 1 to 10, 25 to 45, and column 75 in both files (or search those columns
in the search file).

ASMFSUPC...(CC(1:10 25:45 75)...
Same as previous example.

Valid for FILE, LINE, WORD, BYTE compare types and Search.

LC List Columns. This is the command line directive for the List Columns (LSTCOLM) process
statement. It allows you to selectively list a range of columns to be listed in the listing output file.
Only one column range may be specified (enclosed within parentheses). The column range is
denoted by the first column number, a colon (:), and the last column number (with no spaces on
either side of the colon).

Example
Description

ASMFSUPC...(LC(1:45)...
List columns 1 to 45.

Valid for FILE, LINE, WORD, BYTE compare types and Search.

LT Line Count. This is the command line directive for the LNCT process statement. LT indicates how
many lines of output should appear on each page. The line count value (enclosed within
parentheses) must range between 15 and 999999.

Example
Description

ASMFSUPC...(LT(55)...
List 55 lines per page.

Valid for FILE, LINE, WORD, BYTE compare types and Search.

RR Revision Code Reference. This is the command line directive for the REVREF process statement
and is used with the UPDREV process option. Use REFID to indicate :rev. and :erev. tags for
BookMaster documents and .rc for other SCRIPT/VS documents. In either case, the details are
enclosed within parentheses following the RR command line statement option directive.

Example
Description

ASMFSUPC...(UPDREV RR(REFID=LVl2)
BookMaster revision reference identifier.

ASMFSUPC...(UPDREV RR(RCVAL=1)
SCRIPT/VS (not BookMaster) revision code.

Valid for LINE and WORD compare types. (Not Search.)

Understanding the listings
SuperC allows you to produce a range of listings (reports) which provide detailed information about the
results of your comparison or search.

Chapter 6. Using Enhanced SuperC 257

General listing format
The format and content of each type of listing depends on:
v Whether you are using the SuperC Comparison or the SuperC Search
v The listing type used (see “Listing type” on page 181)

Note: The NOLIST listing type suppresses the generation of any listing output or listing file.
v Whether you are comparing (or searching) a single file or a file group

v The compare type used (in the case of the SuperC Comparison)
v The process options used
v The process statements used

Note: Dates in the heading lines on the sample listing output in this document appear in the format
MM/DD/YYYY. This is the date format for z/VSE and CMS listings. The dates in the heading lines for
z/OS outputs appear in the format YYYY/MM/DD.

How to view the listing output
The listing output is always written to a listing file (unless the NOLIST listing type is used), from which
you can print the listings.

For details on the naming of the listing file:
v On z/OS, see “Invoking the comparison on z/OS” on page 176.
v On CMS, see “Listing file ID” on page 182.
v On z/VSE, see “Invoking the comparison on z/VSE” on page 193.

On CMS, the listing output is also normally displayed on the screen immediately after the comparison or
search process has finished.

The following pages contain:
v A description of the general format of the comparison listing (page “The comparison listing” on page

259), followed by examples of various listings produced by the SuperC Comparison.
v A description of the general format of the search listing (page “The search listing” on page 270),

followed by examples of various listings produced by the SuperC Search.

Notes:

1. Some of the sample listings have been edited to fit on a page. An “|...|” shows text has been
removed.

2. The sample listings shown are for CMS. Most cases show, “CMS” in the page heading and CMS-style
file IDs (fn ft fm).
However, the format and content of the listing output is almost identical, regardless of which
platform you are using to run SuperC. The only significant differences are:

On z/OS v “MVS” is shown in the page heading

v PDS member names are shown

v In the case of file groups, PDS names are shown

On z/VSE v “VSE” is shown in the page heading

v Librarian library, sublibrary, member names, and member types are shown

v In the case of file groups, Librarian library, and sublibrary names are shown

258 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

The comparison listing
SuperC comparison listings consist of 4 basic parts (although not all parts are present for all types of
listing output produced):
v Page Headings (see page “Page headings”)
v Listing Output Section (see page “Listing output section”)
v Member Summary Listing (CMS) (see page “Member summary section (CMS)” on page 261)
v Overall Summary Section (see page “Overall summary section” on page 263)

Page headings
SuperC generates a page heading at the top of each page. The heading consists of two lines of
information.

Figure 82 shows typical page heading lines. The first line contains:
v Printer control page eject character (“1” in column one. Not present when the NOPRTCC process

option is specified)
v “Platform-identifier”. This is one of “CMS”, “MVS”, or “VSE”.
v Program identification title including version and the version date: V1R6M0 (07/11/2008)
v The date and time of the compare
v The page number

Note: The program version and program date are important when reporting suspected SuperC problems.

The second heading line identifies the new and old files. Normally this line shows the file IDs of the new
and old files. However, if the NTITLE and OTITLE process statements have been specified then the
corresponding alternative file titles are shown instead of the file IDs.

Listing output section
The listing output section shows where and what the changes are. Figure 83 is an example of a Listing
Output Section for a LINE comparison with a listing type of DELTA.

�1� Section title line. It tells you that this is a LINE comparison. Possible compare types are BYTE,
FILE, LINE, and WORD.

�2� Column header line.

ID A two-column prefix code that identifies the status of the line. See “Listing prefix codes”
on page 260.

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0 (07/11/2008) 07/11/2008 12.31 PAGE 1
NEW: NEW TEST1 A OLD: OLD TEST1 A

Figure 82. Example of page heading lines for the comparison listing

�1� LISTING OUTPUT SECTION (LINE COMPARE)

�2� ID SOURCE LINES |...| TYPE LEN N-LN# O-LN#
�3� ----+----1----+----2----+-|...|-+----8
�4� I - 970521 |...| RPL= 1 00001 00001
�5� INFO Date cols 11:15 packed 2|...|
�6� D - 970522
�5� INFO Date cols 11:14 packed 1|...|

Figure 83. Example of the listing output section of the comparison listing

Chapter 6. Using Enhanced SuperC 259

SOURCE LINES
The actual text or data from the source files. Under this heading, the actual data from the
files is listed.

TYPE Further breakdown of the ID field. See “Type of difference codes” on page 261 for
information about TYPE codes.

LEN The “length” or number of consecutive lines of the selected type.

N-LN#
Indicates the relative record (line) number of this line (or where it is to be inserted) in the
new source file. Numbers are in decimal.

O-LN#
Indicates the relative record (line) number of this line (or where it was deleted from) in
the old source file. Numbers are in decimal.

�3� The scale of the column positions of the input source lines.

�4� An inserted (I) line. The RPL in TYPE indicates that it is a replacement line. This replacement
involves the line 00001 in both files.

Note: Occasionally, you may see some “unusual” characters on the inserted (I) and deleted (D)
lines. These characters represent data that is in a non-character (and therefore not directly
printable) format in the input record. Ignore them.

�5� An information line that is generated on a comparison listing when a Date Definition process
statement is used (see “Date definitions” on page 252) and when the preceding inserted (I) line or
deleted (D) line contains a date. The information line shows you the content of the date field as it
exists on the input file and the date as used in the comparison. For a full example, see Figure 86
on page 264.

�6� A deleted (D) line.

Listing prefix codes: SuperC output lines are flagged with the following prefix codes listed under the
ID column:

(space)
Match No prefix code means the data is the same in both files.

I Insert Data that is in the new file, but is missing 2 from the sequence in the old file.

D Delete Data that is in the old file, but is missing 2 from the sequence in the new file.

DR Delete Replace For BYTE compare type only. The bytes in the old file that were replaced by the
bytes shown in the preceding insert (I) line.

RN Reformat New For LINE compare type only. A reformatted line in the new file. This line contains
the same data as the old file line, but with different spacing.

RO Reformat Old For LINE compare type only. A line in the old file that is reformatted in the new file.
This line is not shown if the DLREFM process option is used.

MC Match Compose For WORD compare type only. A line containing words that match. The line may
also contain spaces to show the relationship between the matching words and any inserted or
deleted words. Inserted and deleted words are shown in following insert compose (IC) and delete
compose (DC) lines. See Figure 93 on page 270 for an example using a WORD compare type.

IC Insert Compose For WORD compare type only. A line containing words from the new file that are
not in the old file. This line normally follows a match compose (MC) line.

2. “Missing” data is data that is missing from the data sequence but may exist in some other part of the file.

260 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

DC Delete Compose For WORD compare type only. A line containing words from the old file that are
not in the new file. This line normally follows a match compose (MC) or insert compose (IC) line.

IM Insert Moved For comparison listings created using the FMVLNS (flag moved lines) process
option. A line in the new file that also appears in the old file, but has been moved. If the line was
reformatted, this is indicated by a flag to the right of the listing.

DM Delete Moved For comparison listings created using the FMVLNS (flag moved lines) process
option. A line in the old file that also appears in the new file, but has been moved. If the line was
reformatted, this is indicated by a flag to the right of the listing.

| Change Bar For comparison listings created using the GWCBL (generate WORD/LINE comparison
change bar listing) process option. A change bar showing that words/lines were either inserted or
deleted.

Type of difference codes: At the far right of some listings are headings that provide additional
information about the numbers and types of differences SuperC has found. Headings you may see are:

MAT= Number of matched lines.

RFM= Number of reformatted lines.

RPL= Number of replaced lines.

INS= Number of lines that are in the new file, but missing in the old file.

DEL= Number of lines that are in the old file, but missing in the new file.

IMR= Number of lines in the new file that have been moved from where they were in the old file and
reformatted. The listing shows a matching “DMR=” flag for a line in the old file.

DMR=
Number of lines in the old file that have been moved and reformatted in the new file. The listing
shows a matching “IMR=” flag for a line in the new file.

IMV= Number of lines in the new file that have been moved from where they were in the old file. The
listing shows a matching “DMV=” flag for a line in the old file.

DMV=
Number of lines in the old file that have been moved in the new file. The listing shows a matching
“IMV=” flag for a line in the new file.

Member summary section (CMS)
SuperC generates the member summary section when you specify either a file group comparison or use a
macro library (MACLIB) or text library (TXTLIB) as input. The member summary section is really two
sections with a page separator between them.

Figure 84 on page 262 shows an example of the two member summary sections for a FILE compare type.

The first section indicates which files were compared and whether they were found to be different or the
same. In Figure 84 on page 262, NEW TEST1 A was compared to OLD TEST1 A and NEW TEST2 A was
compared to OLD TEST2 A. Both comparisons found differences. Following the member statistics are the
group statistics. As this was a FILE comparison, the statistics are in terms of files and the number of
bytes in each file.

Note: Different compare types produce slightly different results in the first section.

The second part of the member summary section shows all the members from both the new and old file
groups which were not paired (and hence not compared). In Figure 84 on page 262, only OLD TEST3 A
from the old file group was not compared to any file from the new group.

Chapter 6. Using Enhanced SuperC 261

�1� Section Header. In this context, “member” can refer to either members of a MACLIB or TXTLIB,
or members of a file group.

�2� Header line. Consists of several column headers.

DIFF Contains “**” when the new and old files differ.

SAME Contains “**” when the new and old are the same.

FILE NAMES
The file names or paired members of the file group or MACLIB/TXTLIB compared.

N-BYTES
Number of bytes processed in the new member.

O-BYTES
Number of bytes processed in the old member.

N-LINES
(Not shown) Number of lines processed in the new member.

O-LINES
(Not shown) Number of lines processed in the old member.

N-HASH-SUM
(Not shown) SuperC generated a hash value for the new member.

O-HASH-SUM
(Not shown) SuperC generated a hash value for the old member.

Note: The hashsums of files can be used to compare two files that are not physically on the same
system. If the hashsum of a file on system A is different from the hashsum of a file on system B,
then the files can be said to be different. If the hashsum of the files are identical, there is a high
probability that the files are the same. As secondary confirmation that the files are the same,
compare the number of lines and number of bytes.

�3� Group (file) file statistics.

�1� MEMBER SUMMARY LISTING (FILE COMPARE)

�2� DIFF SAME FILE NAMES N-BYTES O-BYTES

�3� ** NEW TEST1 A5 OLD TEST1 A5 240 240
** NEW TEST2 A5 OLD TEST2 A5 240 240

---------------------- ------- -------
�4� GROUP TOTALS 480 480

�5� 2 TOTAL FILES PROCESSED AS A GROUP
�6� 2 TOTAL FILES PROCESSED HAD CHANGES
�7� 0 TOTAL FILES PROCESSED HAD NO CHANGES
�8� 0 TOTAL NEW FILES NOT PAIRED
�9� 1 TOTAL OLD FILES NOT PAIRED

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0
NEW: NEW TEST* A OLD:

MEMBER SUMMARY LISTING (FILE COMPARE)

NON-PAIRED NEW GROUP FILES | NON-PAIRED OLD GR

| �10� OLD TEST3 A5

Figure 84. Example of the member summary section of the comparison listing

262 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

�4� Group totals header line.

�5� Total number of files that were processed as a group.

�6� Total number of files compared that had differences.

�7� Total number of files compared that had no differences.

�8� Total number of new files that were not paired (and therefore were not compared).

�9� Total number of old files that were not paired (and therefore were not compared).

�10� OLD TEST3 A5 was present in the old file group. It could not be paired with a similarly named
file in the new file group and was not processed.

Overall summary section
The overall summary section gives the overall statistics of the comparison process. Figure 85 is a
representative example of an overall summary section.

Figure 85 shows the following information about the comparison:

�1� The first word of the title tells you the type of comparison. The overall summary is provided for
BYTE, FILE, LINE, and WORD compare types.

�2� Of the 3 lines in each file, 2 from the new file matched 2 corresponding lines of the old file. These
are called matching lines.

�3� There are no reformatted lines.

�4� There is 1 inserted line in the new file.

�5� The old file contains 1 line that is missing from the new source file.

�6� 3 lines from the new file were processed.

�7� The old file also has a total of 3 lines.

�8� The total number of changes is a summation of items �9�, �10�, and �11�. It is a convenient
number that best represents the change activity of the two compared files.

�9� The total number of reformats and paired changes. This represents a sum of items that may be
considered to be a single change. That is, some changes are made in pairs and need only be
counted as a single instance of a change.

�10� There were no non-paired inserts. Non-paired inserts are changes to the new file that have no
relationship to the old file (that is, no deletes from the old file occurred in the same area).

�11� There were no non-paired deletes. Non-paired deletes are changes to the old file that have no
relationship to the new file (that is, no inserts to the new file occurred in the same area).

�1� LINE COMPARE SUMMARY AND STATISTICS

�2� 2 NUMBER OF LINE MATCHES �8� 1 TOTAL CHANGES (PAIRED+NONPAIR
�3� 0 REFORMATTED LINES �9� 1 PAIRED CHANGES (REFM+PAIRED
�4� 1 NEW FILE LINE INSERTIONS�10� 0 NON-PAIRED INSERTS
�5� 1 OLD FILE LINE DELETIONS �11� 0 NON-PAIRED DELETES
�6� 3 NEW FILE LINES PROCESSED
�7� 3 OLD FILE LINES PROCESSED

�12� LISTING-TYPE = OVSUM �13� COMPARE-COLUMNS = 1:72
�14� LONGEST-LINE = 80
�15� PROCESS OPTIONS USED: NONE

Figure 85. Example of the overall summary section of the comparison listing

Chapter 6. Using Enhanced SuperC 263

�12� The listing type is OVSUM. This is the listing type option selected for the comparison. Other
options are: DELTA, CHNG, and LONG.

�13� SuperC compared columns 1 through 72. This value provides a convenient reference for
confirming if all the columns in the line have been compared or only some portion of the line.

�14� The longest line length of any line in either file is 80 characters.

�15� No process options were used.

Examples of comparison listings
The following represent some of the output types available from SuperC.

In Figure 86, the two date definition process statements have each caused an information (“INFO”) line to
be generated. The information line shows:
v The position of the defined date in the record.
v The contents of the defined date field.
v The date as it was actually compared. In the second information line, you can see the defined date has a

2-digit year portion (“97”) but has actually been compared using a 4-digit year portion (“1997”).

For further details, see “Date definitions” on page 252.

Note: Occasionally, you may see some “unusual” characters on the inserted (I) and deleted (D) lines.
These characters represent data that is in a non-character (and therefore not directly printable) format in
the input record. Ignore them.

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0 (07/11/2008) 07/11/2008 12.31 PAGE 1

NEW: D1 A A OLD: D2 A A

LISTING OUTPUT SECTION (LINE COMPARE)

ID SOURCE LINES TYPE LEN N-LN# O-LN#
----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8

MAT= 1
I - 970522 øêL RPL= 1 00002 00002
INFO Date cols 11:15 packed 20970522 comp=(2097 05 22)
D - 970522 øêL
INFO Date cols 11:14 packed 970522 comp=(1997 05 22)
1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0 (07/11/2008) 07/11/2008 12.31 PAGE 1
NEW: D1 A A OLD: D2 A A

LINE COMPARE SUMMARY AND STATISTICS

1 NUMBER OF LINE MATCHES 1 TOTAL CHANGES (PAIRED+NONPAIRED CHNG)
0 REFORMATTED LINES 1 PAIRED CHANGES (REFM+PAIRED INS/DEL)
1 NEW FILE LINE INSERTIONS 0 NON-PAIRED INSERTS
1 OLD FILE LINE DELETIONS 0 NON-PAIRED DELETES
2 NEW FILE LINES PROCESSED
2 OLD FILE LINES PROCESSED

LISTING-TYPE = DELTA COMPARE-COLUMNS = 1:72 LONGEST-LINE = 80
PROCESS OPTIONS USED: SEQ(DEFAULT)
THE FOLLOWING PROCESS STATEMENTS (USING COLUMNS 1:72) WERE PROCESSED:

Y2PAST 1987
NY2P 11:15 YYYYMMDD
OY2P 11:14 YYMMDD
NFOCUS COLS 1:20
OFOCUS COLS 1:20

Figure 86. Example of comparison listing with dates being compared

264 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

In Figure 87, COLHEAD process statements have been used to generate column headings (“Account
Number”, “Birth Date”, and “Surname”) for the corresponding input data. For further details, see “Define
column headings” on page 239.

In Figure 88, the new and old files are shown side-by-side. The NARROW listing type allows SuperC to
output 55 columns from each file. Notice how the inserts and deletes are horizontally aligned with each
other.

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0 (07/11/2008) 07/11/2008 14.38 PAGE 1

NEW: D1 A A OLD: D2 A A

LISTING OUTPUT SECTION (LINE COMPARE)

ID SOURCE LINES TYPE LEN N-LN# O-LN#
Account Birth Surname
Number Date MAT= 1

I - 111222 19970101 Jones RPL= 1 00002 00002
D - 111222 970102 Jones
1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0 (07/11/2008) 07/11/2008 14.38 PAGE 1
NEW: D1 A A OLD: D2 A A

LINE COMPARE SUMMARY AND STATISTICS

1 NUMBER OF LINE MATCHES 1 TOTAL CHANGES (PAIRED+NONPAIRED CHNG)
0 REFORMATTED LINES 1 PAIRED CHANGES (REFM+PAIRED INS/DEL)
1 NEW FILE LINE INSERTIONS 0 NON-PAIRED INSERTS
1 OLD FILE LINE DELETIONS 0 NON-PAIRED DELETES
2 NEW FILE LINES PROCESSED
2 OLD FILE LINES PROCESSED

LISTING-TYPE = DELTA COMPARE-COLUMNS = 1:72 LONGEST-LINE = 80
PROCESS OPTIONS USED: SEQ(DEFAULT)
THE FOLLOWING PROCESS STATEMENTS (USING COLUMNS 1:72) WERE PROCESSED:

COLHEAD ’Account’,’Number’,1:8,N 1:6 C,O 1:6 C
COLHEAD ’Birth’,’Date’,10:20,N 7:11 P,O 7:10 P
COLHEAD ’Surname’,,22:61,N 12:51 C,O 11:50 C

Figure 87. Example of comparison listing with column headings (Using COLHEAD)

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0 (07/11/2008) 07/11/2008 15.10
NEW: JLEVERIN TEST2 A OLD: JLEVERIN TEST1

LISTING OUTPUT SECTION (LINE COMPARE)

ID NEW FILE LINES ID OLD FILE LINES N-LN# O-LN#
----+----1----+----2|...|5----+ ----+----1----+----2|...|5---

RN-This line is reforma|...|" file | RO-This line is reforma|...|"new 00001 00001
This line is the sam|...| | This line is the sam|...| 00002 00002

I -This line differs fr|...|. | D -This line differs fr|...|. 00003 00003
This line is the sam|...| | This line is the sam|...| 00004 00004

I -This line is in the |...|ld". | |...| 00005

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0 (07/11/2008) 07/11/2008 15.10
NEW: JLEVERIN TEST2 A OLD: JLEVERIN TEST1

LINE COMPARE SUMMARY AND STATISTICS

2 NUMBER OF LINE MATCHES 3 TOTAL CHANGES (PAIRED+NONPAIRED CHNG)
1 REFORMATTED LINES 2 PAIRED CHANGES (REFM+PAIRED INS/DEL)
2 NEW FILE LINE INSERTIONS 1 NON-PAIRED INSERTS
1 OLD FILE LINE DELETIONS 0 NON-PAIRED DELETES
5 NEW FILE LINES PROCESSED
4 OLD FILE LINES PROCESSED

LISTING-TYPE = CHNG COMPARE-COLUMNS = 1:72 LONGEST-LINE = 80
PROCESS OPTIONS USED: SEQ(DEFAULT) NARROW NOPRTCC

ASMFSUPC INFORM04, LISTING LINES MAY BE TRUNCATED DUE TO LIMITING OUTPUT LINE
WIDTH.

Figure 88. Example of a NARROW side-by-side listing

Chapter 6. Using Enhanced SuperC 265

Figure 89, is like the previous example (Figure 88 on page 265) except that the process option DLMDUP
has been used to suppress the matched lines from the old file section. This simplifies the combined listing
output, allowing the changes to stand out more clearly.

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0
NEW: JLEVERIN TEST2 A OLD: JLEVERIN TEST1

LISTING OUTPUT SECTION (LINE COMPARE)

ID NEW FILE LINES ID OLD FILE LINES N-LN# O-LN#
----+----1----+----2|...|5----+ ----+----1----+----2|...|5---

RN-This line is reforma|...|" file | RO-This line is reforma|...|"new 00001 00001
This line is the sam|...| | |...| 00002 00002

I -This line differs fr|...|. | D -This line differs fr|...|. 00003 00003
This line is the sam|...| | |...| 00004 00004

I -This line is in the |...|ld". | |...| 00005

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0
NEW: JLEVERIN TEST2 A OLD: JLEVERIN TEST1

LINE COMPARE SUMMARY AND STATISTICS

2 NUMBER OF LINE MATCHES 3 TOTAL CHANGES (PAIRED+NONPAIRED CHNG)
1 REFORMATTED LINES 2 PAIRED CHANGES (REFM+PAIRED INS/DEL)
2 NEW FILE LINE INSERTIONS 1 NON-PAIRED INSERTS
1 OLD FILE LINE DELETIONS 0 NON-PAIRED DELETES
5 NEW FILE LINES PROCESSED
4 OLD FILE LINES PROCESSED

LISTING-TYPE = CHNG COMPARE-COLUMNS = 1:72 LONGEST-LINE = 80
PROCESS OPTIONS USED: SEQ(DEFAULT) NARROW DLMDUP NOPRTCC

ASMFSUPC INFORM04, LISTING LINES MAY BE TRUNCATED DUE TO LIMITING OUTPUT LINE
WIDTH.

Figure 89. Example of a NARROW side-by-side listing (with DLMDUP)

266 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

In Figure 90, the new and old files are shown side-by-side in a WIDE listing. SuperC lists 80 columns from
each file. Notice how the inserts and deletes are horizontally aligned with each other.

Note: The output file has a LRECL of 202/203 and may require special processing and printer capability
to obtain a hard copy. Refer to the previous NARROW option examples if the large LRECL requirement
cannot be satisfied and a side-by-side listing is still required.

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0
NEW: JLEVERIN TEST2 A OLD: JLEVERIN TEST1

LISTING OUTPUT SECTION (LINE COMPARE)

ID N|...| ID O|...| TYPE LEN TYPE LEN N-LN# O-LN#
----+----1|...|+----8 ----+----1|...|+----8

RN-This line |...|000100 | RO-This line |...|000100 RFM= 1 00001 00001
This line |...|000200 | |...| MAT= 1 00002 00002

I -This line |...|000300 | D -This line |...|000300 INS= 1 DEL= 1 00003 00003
This line |...|000400 | |...| MAT= 1 00004 00004

I -This line |...|000500 | |...| INS= 1 00005

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0
NEW: JLEVERIN TEST2 A OLD: JLEVERIN TEST1

LINE COMPARE SUMMARY AND STATISTICS

2 NUMBER OF LINE MATCHES 3 TOTAL CHANGES (PAIRED+NONPAIRED CHNG)
1 REFORMATTED LINES 2 PAIRED CHANGES (REFM+PAIRED INS/DEL)
2 NEW FILE LINE INSERTIONS 1 NON-PAIRED INSERTS
1 OLD FILE LINE DELETIONS 0 NON-PAIRED DELETES
5 NEW FILE LINES PROCESSED
4 OLD FILE LINES PROCESSED

LISTING-TYPE = CHNG COMPARE-COLUMNS = 1:72 LONGEST-LINE = 80
PROCESS OPTIONS USED: SEQ(DEFAULT) WIDE DLMDUP NOPRTCC

Figure 90. Example of a WIDE side-by-side listing

Chapter 6. Using Enhanced SuperC 267

Figure 91 shows a collection of files and statistics for the specified SELECTF designated file group. Some
files are the same and some files differ.

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0 (07/11/2008) 07/11/2008 16.46
NEW: PACKAGE ANNOUNCE A1 + SELECTF FILE LIST OLD: PACKAGE

MEMBER SUMMARY LISTING (FILE COMPARE)

DIFF SAME FILE NAMES N-BYTES O-BYTES N-LINES

** PACKAGE ANNOUNCE A1:PACKAGE ANNOUNCE E1 11210 51148 241
** PACKAGE EXEC A5:PACKAGE EXEC E5 151749 151646 4311

** PACKAGE HELP A5:PACKAGE HELP E5 70683 70683 1631
** PACKAGE HELPCMS A5:PACKAGE HELPCMS E1 58 65 4
** PACKAGE MENU A5:PACKAGE MENU E5 16803 16803 426
** PACKAGE MODULE A1:PACKAGE MODULE E1 127604 126076 4

** PACKAGE PACKAGE A5:PACKAGE PACKAGE E5 2408 2408 42
---------------------- ------- ------- -------

GROUP TOTALS 380515 418829 6659

Column 78 -------------------------------------->O-LINES N-HASH-SUM O-HASH-SUM

Column 80 --->1147 C18E675F F5CE6031
(Continuation of previous data lines) 4310 2D2DF797 E0F1D820

1631 8A05CE27 8A05CE27
6 B1879676 F011E226

426 BAC0D5A9 BABFD5A9
4 4DF43D5A 3E820FA9

42 B29FA936 B29FA936

7566

7 TOTAL FILES PROCESSED AS A GROUP
5 TOTAL FILES PROCESSED HAD CHANGES
2 TOTAL FILES PROCESSED HAD NO CHANGES
0 TOTAL NEW FILES NOT PAIRED
0 TOTAL OLD FILES NOT PAIRED

THE FOLLOWING PROCESS STATEMENT(S) WERE PROCESSED:
SELECTF PACKAGE ANNOUNCE A1 PACKAGE ANNOUNCE E1
SELECTF PACKAGE EXEC A5 PACKAGE EXEC E5
SELECTF PACKAGE HELP A5 PACKAGE HELP E5
SELECTF PACKAGE HELPCMS A5 PACKAGE HELPCMS E1
SELECTF PACKAGE MENU A5 PACKAGE MENU E5
SELECTF PACKAGE MODULE A1 PACKAGE MODULE E1
SELECTF PACKAGE PACKAGE A5 PACKAGE PACKAGE E5

Figure 91. Example of a FILE comparison of a file group

268 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Figure 92 is like the previous example (Figure 91 on page 268) except that the LOCS process option has
been used to limit the output to files from the file group which were found to be different. This option
can greatly reduce the volume of output when the total number of files is secondary to the change
activity in the group.

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0
NEW: PACKAGE ANNOUNCE A1 + SELECTF FILE LIST OLD: PACKAGE

MEMBER SUMMARY LISTING (FILE COMPARE)

DIFF SAME FILE NAMES N-BYTES O-BYTES N-LINES

** PACKAGE ANNOUNCE A1:PACKAGE ANNOUNCE E1 11210 51148 241
** PACKAGE EXEC A5:PACKAGE EXEC E5 151749 151646 4311
** PACKAGE HELPCMS A5:PACKAGE HELPCMS E1 58 65 4
** PACKAGE MENU A5:PACKAGE MENU E5 16803 16803 426
** PACKAGE MODULE A1:PACKAGE MODULE E1 127604 126076 4

---------------------- ------- ------- -------
GROUP TOTALS 380515 418829 6659

Column 78 -------------------------------------->O-LINES N-HASH-SUM O-HASH-SUM

Column 80 --->1147 C18E675F F5CE6031
(Continuation of previous data lines) 4310 2D2DF797 E0F1D820

6 B1879676 F011E226
426 BAC0D5A9 BABFD5A9

4 4DF43D5A 3E820FA9

7566

7 TOTAL FILES PROCESSED AS A GROUP
5 TOTAL FILES PROCESSED HAD CHANGES
2 TOTAL FILES PROCESSED HAD NO CHANGES
0 TOTAL NEW FILES NOT PAIRED
0 TOTAL OLD FILES NOT PAIRED

PROCESS OPTIONS USED: LOCS

THE FOLLOWING PROCESS STATEMENT(S) WERE PROCESSED:
SELECTF PACKAGE ANNOUNCE A1 PACKAGE ANNOUNCE E1
SELECTF PACKAGE EXEC A5 PACKAGE EXEC E5
SELECTF PACKAGE HELP A5 PACKAGE HELP E5
SELECTF PACKAGE HELPCMS A5 PACKAGE HELPCMS E1
SELECTF PACKAGE MENU A5 PACKAGE MENU E5
SELECTF PACKAGE MODULE A1 PACKAGE MODULE E1
SELECTF PACKAGE PACKAGE A5 PACKAGE PACKAGE E5

Figure 92. Example of a FILE comparison of a file group (with LOCS)

Chapter 6. Using Enhanced SuperC 269

Figure 93 is an output listing from a comparison using the WORD compare type and shows how the
output lines differ when the comparison is made at the WORD level. The deleted words are normally
listed under the replacement (inserted) words. Separate (both inserted and deleted) lines are listed when
completely changed lines are detected.

The search listing
The typical search listing is composed of three parts:
v Page Heading
v Source Lines Section
v Summary Section

Page heading
SuperC generates a page heading at the top of each page.

Figure 94 shows a typical page heading line. It contains:
v Printer control page eject character (“1” in column one. not present when the NOPRTCC process option

is specified).
v “Platform-identifier”. One of “CMS”, “MVS”, or “VSE”.
v Program identification title including version and the version date: V1R6M0 (07/11/2008).
v The date and time of the search
v The page number.

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0
NEW: JLEVERIN TEST2 A OLD: JLEVERIN TEST1 A

LISTING OUTPUT SECTION (WORD COMPARE)

ID SOURCE LINES (COMPARED COLUMNS) N-LN# O-LN#

This line is reformatted; the spacing in the "new" file differs 00001 00001
This line is the same in both files. 00002 00002

MC-This line differs from the text in the file. 00003 00003
IC- "old" 00003 00003
DC- "new" 00003 00003

This line is the same in both files. 00004 00004
I -This line is in the "new" file, but not in the "old". 00005 00004
1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0
NEW: JLEVERIN TEST2 A OLD: JLEVERIN TEST1 A

WORD COMPARE SUMMARY AND STATISTICS

40 NUMBER OF WORD MATCHES 14 TOTAL CHANGES (PAIRED+NONPAIRED CHNG)
14 NEW FILE WORD INSERTIONS 2 NEW FILE LINES CHANGED/INSERTED
1 OLD FILE WORD DELETIONS 1 OLD FILE LINES CHANGED/DELETED
54 NEW FILE WORDS PROCESSED 5 NEW FILE LINES PROCESSED
41 OLD FILE WORDS PROCESSED 4 OLD FILE LINES PROCESSED

LISTING-TYPE = LONG COMPARE-COLUMNS = 1:80 LONGEST-LINE = 80
PROCESS OPTIONS USED: NONE

Figure 93. Example of a WORD comparison

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0 (04/20/2004) 07/11/2008 12.32 PAGE 1

Figure 94. Example of the page heading line for the search listing

270 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Note: The program version and program date are important when reporting suspected SuperC problems.

Source lines section
The source lines section provides detailed information about the results of the Search.
Figure 95 is an example showing the source line section. Only one character string (“NEW”) was specified

for the search.
�1� Column Header Line.

LINE-#
Relative line number of the line where the string was found.

SOURCE LINES
Up to 106 characters of the source line where the string was found.

SRCH FN:
Identifies the file which was searched. In this example, it is NEW1 TESTCASE C.

�2� Text Lines. Relative line numbers and text lines from the search file where the string “NEW” was
found.

The format of the source lines section changes when certain process options are used:

IDPFX (“Identifier Prefixed”)
The file ID is prefixed to each line of source text. See page “Source lines section (IDPFX).”

LMTO (“List Group Member Totals”)
Only the totals of lines found and processed are listed. See page “Source lines section (LMTO)”
on page 272.

XREF (“Cross-reference Strings”)
Creates a cross-reference listing by search string. See page “Source lines section (XREF)” on page
272.

Note: the XREF process option also generates additional totals for each search string in the
summary section.

Source lines section (IDPFX): The source line section generated when the IDPFX process option is used
is like the normal source line section but with the search file ID preceding each line of source text. See
Figure 96 on page 272.

�1� LINE-# SOURCE LINES SRCH FN: NEW1 TESTCASE C

�2� 1 This NEW file is FIXED 80 with Sequence Numbers
2 /** NEW: To get rid of this PLI/REXX type comment, use DPPLCMT
3 (** NEW: To get rid of this PASCAL type comment, use DPPSCMT.
4 ! * NEW: Use DPPDCMT for this comment.
5 * * NEW: Use DPACMT to remove this assembler type comment
6 -- *NEW: Use DPADCMT to remove this line.
7 * * NEW: COBOL comment. Remove with DPCBCMT.
8 C * NEW: FORTRAN comment. Remove with DPFTCMT.
9 &&& This NEW line comes out with a DPLINE ’&&&’

Figure 95. Example of the source lines section of a search listing

Chapter 6. Using Enhanced SuperC 271

�1� Column Header Line.

FNAME
File name (fn) of the file where in the string was found.

FTYPE
File type (ft) of the file where in the string was found.

FM File mode (fm) of the file where in the string was found.

LINE-#
Relative line number of the line where the string was found.

SOURCE-LNS
Up to 106 characters of the source line where the string was found.

SRCH FN:
In this example, the search file ID is NEW1 TESTCASE C.

�2� The search file ID, relative line number, and text line from the search file where the string was
found.

Source lines section (LMTO): The LMTO process option generates a listing showing the total number of
lines found and processed for each file. (The individual lines found are not listed.) See Figure 97.

�1� Column Header Line.
FILES-SEARCHED

Identifies the files which were searched.
LINES-FOUND

Number of the lines found containing one or more of the search strings. The line is only
counted once no matter how many search strings were found in the line.

LINES-PROC
Number of lines in the file that were searched. Does not include “Do not Process” lines.

�2� Individual file totals.

Source lines section (XREF): The XREF process option creates a cross-reference listing where the source
lines are listed by search strings.

�1� FNAME FTYPE FM LINE-# SOURCE-LNS SRCH FN: NEW1 TESTCASE C

�2� NEW1 TESTCASE C1 1 This NEW file is FIXED 80 with Seque
NEW1 TESTCASE C1 2 /** NEW: To get rid of this PLI/REXX type comm
NEW1 TESTCASE C1 3 (** NEW: To get rid of this PASCAL type commen
NEW1 TESTCASE C1 4 ! * NEW: Use DPPDCMT for this comment.
NEW1 TESTCASE C1 5 * * NEW: Use DPACMT to remove this assembler t
NEW1 TESTCASE C1 6 -- *NEW: Use DPADCMT to remove this line.
NEW1 TESTCASE C1 7 * * NEW: COBOL comment. Remove with DPCBC
NEW1 TESTCASE C1 8 C * NEW: FORTRAN comment. Remove with DPFTCMT
NEW1 TESTCASE C1 9 &&& This NEW line comes out with a DPLINE ’&&&

Figure 96. Example of the IDPFX source lines section of a search listing

�1� FILES-SEARCHED LINES-FOUND LINES-PROC
�2� NEW1 TESTCASE C1 9 9

NEW13 TESTCASE C1 10 15

Figure 97. Example of the LMTO source lines section of a search listing

272 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

In Figure 98, lines which contain the string “NEW” in NEW1 TESTCASE C1 are listed first, then lines
which contain the string “NEW” in NEW13 TESTCASE C1, then lines which contain the string “USE” in
NEW1 TESTCASE C1, and finally those lines which contain the string “USE” in NEW13 TESTCASE C1.

�1� Sub-section line showing string “NEW” and file NEW1 TESTCASE C1.
�2� Line number and text of line where string was found.
�3� Sub-section line showing file NEW13 TESTCASE C1 (string is still “NEW”).
�4� Line number and text of line where string was found.
�5� Sub-section line showing string “USE” and file NEW1 TESTCASE C1.
�6� Line number and text of line where string was found.
�7� Sub-section line showing file NEW13 TESTCASE C1 (string is still “USE”).
�8� Line number and text of line where string was found.

Summary section
The summary section (see Figure 99 on page 274) provides various totals resulting from the search and
shows any process statements which were used.

�1� ----- STRING="NEW" IN NEW1 TESTCASE C1 -----

�2� 1 This NEW file is FIXED 80 with Sequence Numbers
2 /** NEW: To get rid of this PLI/REXX type comment, use DPPLCMT. */
3 (** NEW: To get rid of this PASCAL type comment, use DPPSCMT. *)

...
. . .

�3� ----- IN NEW13 TESTCASE C1 -----

�4� 1 This NEW file is FIXED 80 with Sequence Numbers
2 /** NEW: To get rid of this PLI/REXX type comment, use DPPLCMT. */
3 (** NEW: To get rid of this PASCAL type comment, use DPPSCMT. *)

...
. . .

�5� ----- STRING="USE" IN NEW1 TESTCASE C1 -----

�6� 2 /** NEW: To get rid of this PLI/REXX type comment, use DPPLC
3 (** NEW: To get rid of this PASCAL type comment, use DPPSCMT. *)
4 ! * NEW: Use DPPDCMT for this comment.

...
. . .

�7� ----- IN NEW13 TESTCASE C1 -----

�8� 2 /** NEW: To get rid of this PLI/REXX type comment, use DPPLC
3 (** NEW: To get rid of this PASCAL type comment, use DPPSCMT. *)
4 ! * NEW: Use DPPDCMT for this comment.

...
. . .

Figure 98. Example of the XREF source lines section (with ANYC)

Chapter 6. Using Enhanced SuperC 273

The summary section consists of:

�1� A section heading line.

�2� A column heading line.

�3� One line of totals.

�4� A multi-line section (two lines in Figure 99) showing the process statements which were used.

XREF summary section: When the XREF process option (“Cross-reference Strings”) is used, additional
lines are included in the summary section. In Figure 100, these are lines �2�, �3�, and �4�. The totals are
listed according to each search string.

Note: The XREF summary section may be produced without the XREF source line section by using the
LMTO process option.

�1� Section header line. Identifies the file which was searched. In this example, it is NEW1*
TESTCASE C.

�2� Column header line.

STRING-FOUND
Column indicating the search string.

LINES-FOUND
Lines which contained one or more occurrences of the search string.

FILES-W/LNS
Total number of files in the group in which the string was found.

STRING-NOT-FOUND
Indication that the string was not found in any of the files in the file group.

�3� Totals for string “NEW”

�4� Totals for string “USE”

�5� Column header line.

�1� LINE-# SOURCE LINES SRCH FN: NEW1 TESTCASE C

�2� LINES-FOUND FILES-W/LNS FILES-PROC LINES-PROC COMPARE-COLS
�3� 9 1 1 9 1: 80

�4� THE FOLLOWING PROCESS STATEMENT(S) WERE PROCESSED:
SRCHFOR ’NEW’

Figure 99. Example of the summary section of a search listing

�1� SUMMARY SECTION SRCH FN: NEW1* TESTCASE C

�2� STRING-FOUND LINES-FOUND FILES-W/LNS STRING-NOT-FOUND
�3� "NEW" 19 2
�4� "USE" 10 2

�5� LINES-FOUND FILES-W/LNS FILES-PROC LINES-PROC COMPARE-COLS
�6� 29 2 5 64 1: 80

Figure 100. Example of the XREF summary section of a search listing

274 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

LINES-FOUND
The summation of lines found for the individual search strings.

FILE-W/LNS
Number of files where lines were found to contain one or more of the search strings.

FILE-PROC
Number of files that were searched.

LINES-PROC
Number of lines that were part of the search set.

COMPARE-COLS
The column range that was searched.

�6� Totals statistics arranged under the columns specified in �5�.

Examples of search listings

Search of one file: Figure 101 shows the 3 parts of a search listing: page heading, source lines section,
and summary section.

IDPFX search of file group: The file group NEW1* TESTCASE C composed of 5 files was searched and
8 lines within 2 files had “remove” and “rid” as the search arguments.

1 ASMFSUPC - CMS LINE/WORD/BYTE COMPARE UTILITY - V1R6M0 (07/11/2008)
LINE-# SOURCE LINES SRCH FN: NEW1 TESTCASE C

2 /** NEW: To get rid of this PLI/REXX type comment, use DPPLCMT. */
3 (** NEW: To get rid of this PASCAL type comment, use DPPSCMT. *)
5 * * NEW: Use DPACMT to remove this assembler type comment.
6 -- *NEW: Use DPADCMT to remove this line.

1 ASMFSUPC - CMS LINE/WORD/BYTE COMPARE UTILITY - V1R6M0 (07/11/2008) 07/11/2008
SUMMARY SECTION SRCH FN: NEW1 TESTCASE C

LINES-FOUND FILES-W/LNS FILES-PROC LINES-PROC COMPARE-COLS LONGEST-LINE
4 1 1 9 1: 80 80

THE FOLLOWING PROCESS STATEMENT(S) WERE PROCESSED:
SRCHFOR ’remove’
SRCHFOR ’rid’

Figure 101. Example of the search listing (single file)

Chapter 6. Using Enhanced SuperC 275

XREF search of file group for two strings: XREF sorts the search string occurrences before producing a
listing. The example shows a listing when both strings are found in the file group.

LMTO search of file group: LMTO produces only the summary section for the search operation.

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0
FNAME FTYPE FM LINE-# SOURCE-LNS SRCH FN: NEW1* TESTCASE C

NEW1 TESTCASE C1 2 /** NEW: To get rid of this PLI/REXX type comment
NEW1 TESTCASE C1 3 (** NEW: To get rid of this PASCAL type comment,
NEW1 TESTCASE C1 5 * * NEW: Use DPACMT to remove this assembler type
NEW1 TESTCASE C1 6 -- *NEW: Use DPADCMT to remove this line.

NEW13 TESTCASE C1 2 /** NEW: To get rid of this PLI/REXX type comment
NEW13 TESTCASE C1 3 (** NEW: To get rid of this PASCAL type comment,
NEW13 TESTCASE C1 5 * * NEW: Use DPACMT to remove this assembler type
NEW13 TESTCASE C1 6 -- *NEW: Use DPADCMT to remove this line.

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0
SUMMARY SECTION SRCH FN: NEW1* TESTCASE C

LINES-FOUND FILES-W/LNS FILES-PROC LINES-PROC COMPARE-COLS LONGEST-LIN
8 2 5 64 1: 80 80

PROCESS OPTIONS USED: IDPFX

THE FOLLOWING PROCESS STATEMENT(S) WERE PROCESSED:
SRCHFOR ’remove’
SRCHFOR ’rid’

Figure 102. Example of IDPFX search on file group

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0
LINE-# SOURCE LINES SRCH FN: NEW1* TESTCASE C

----- STRING="remove" IN NEW1 TESTCASE C1 -----

5 * * NEW: Use DPACMT to remove this assembler type comment.
6 -- *NEW: Use DPADCMT to remove this line.

----- IN NEW13 TESTCASE C1 -----

5 * * NEW: Use DPACMT to remove this assembler type comment.
6 -- *NEW: Use DPADCMT to remove this line.

----- STRING="rid" IN NEW1 TESTCASE C1 -----

2 /** NEW: To get rid of this PLI/REXX type comment, use DPPLCMT. */
3 (** NEW: To get rid of this PASCAL type comment, use DPPSCMT. *)

----- IN NEW13 TESTCASE C1 -----

...

THE FOLLOWING PROCESS STATEMENT(S) WERE PROCESSED:
SRCHFOR ’remove’
SRCHFOR ’rid’

Figure 103. Example of XREF search on file group for two strings

276 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

LMTO search of file group using the XREF process option: This is another example of a summary only
output. Contrasting with the previous example, the string totals are sorted before being listed.

LTO search of file group: LTO produces the overall totals section of the search results.

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0
FILE TOTALS SECTION SRCH FN: NEW1* TESTCASE C

FILES-SEARCHED LINES-FOUND LINES-PROC
NEW1 TESTCASE C1 4 9
NEW13 TESTCASE C1 4 15

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0
SUMMARY SECTION SRCH FN: NEW1* TESTCASE C

LINES-FOUND FILES-W/LNS FILES-PROC LINES-PROC COMPARE-COLS LONGEST-LIN
8 2 5 64 1: 80 80

PROCESS OPTIONS USED: LMTO

THE FOLLOWING PROCESS STATEMENT(S) WERE PROCESSED:
SRCHFOR ’remove’
SRCHFOR ’rid’

Figure 104. Example of LMTO search on file group

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0
XREF TOTALS SECTION SRCH FN: NEW1* TESTCASE C

STRING-USED FILES-SEARCHED LINES-FOUND LINES-PROC
"remove" NEW1 TESTCASE C1 2 10

NEW13 TESTCASE C1 2 16

"rid" NEW1 TESTCASE C1 2 10
NEW13 TESTCASE C1 2 16

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0
SUMMARY SECTION SRCH FN: NEW1* TESTCASE C

STRING-FOUND LINES-FOUND FILES-W/LNS STRING-NOT-FOUND
"remove" 4 2
"rid" 4 2

LINES-FOUND FILES-W/LNS FILES-PROC LINES-PROC COMPARE-COLS LONGEST-LIN
8 2 5 64 1: 80 80

PROCESS OPTIONS USED: LMTO XREF

THE FOLLOWING PROCESS STATEMENT(S) WERE PROCESSED:
SRCHFOR ’remove’
SRCHFOR ’rid’

.

Figure 105. Example of XREF/LMTO search of file group

Chapter 6. Using Enhanced SuperC 277

LPSF search of file group: The process option LPSF (“List Previous-Search-Following Lines”) lists lines
before and after the search text detected line. The “*” in the line number column indicate they were part
of the extra lines listed.

Update files
An update file contains information relating to the result of a comparison and is generated when one of
the update process options is specified:

UPDCMS8 (“Update CMS sequenced 8 file” on page 281)
UPDCNTL (“Update control files” on page 282)
UPDLDEL (“Update long control” on page 284)
UPDMVS8 (“Update MVS sequenced 8 file” on page 285)
UPDPDEL (“Update prefixed delta lines” on page 286)
UPDREV (“Revision file” on page 279)
UPDREV2 (“Revision file (2)” on page 280)
UPDSEQ0 (“Update sequenced 0 file” on page 287)
UPDSUMO (“Update summary only files” on page 287)

Notes:

1. UPDCMS8, UPDMVS8, UPDPDEL, UPDREV, UPDREV2, and UPDSEQ0 do not generate an update
file after a comparison of matching files (Return Code = 0).

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0
SUMMARY SECTION SRCH FN: NEW1* TESTCASE C

LINES-FOUND FILES-W/LNS FILES-PROC LINES-PROC COMPARE-COLS LONGEST-LIN
8 2 5 64 1: 80 80

PROCESS OPTIONS USED: LTO

THE FOLLOWING PROCESS STATEMENT(S) WERE PROCESSED:
SRCHFOR ’remove’
SRCHFOR ’rid’

Figure 106. Example of LTO search on file group

1 ASMFSUPC - CMS FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- V1R6M0
LINE-# SOURCE LINES SRCH FN: NEW1* TESTCASE C

NEW1 TESTCASE C1 -------------- STRING(S) FOUND --------

* This line is reformatted; the spacing in the "new" member differs.
2 /** NEW: To get rid of this PLI/REXX type comment, use DPPLCMT. */
3 (** NEW: To get rid of this PASCAL type comment, use DPPSCMT. *)
* ! * NEW: Use DPPDCMT for this comment.
5 * * NEW: Use DPACMT to remove this assembler type comment.
6 -- *NEW: Use DPADCMT to remove this line.
* * * NEW: COBOL comment. Remove with DPCBCMT.
* C * NEW: FORTRAN comment. Remove with DPFTCMT.
* &&& This NEW line comes out with a DPLINE ’&&&’

NEW13 TESTCASE C1 -------------- STRING(S) FOUND --------

* This NEW file is FIXED 80 with Sequence Numbers
2 /** NEW: To get rid of this PLI/REXX type comment, use DPPLCMT. */
3 (** NEW: To get rid of this PASCAL type comment, use DPPSCMT. *)

Figure 107. Example of LPSF search on file group

278 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

2. For details on the naming of the update file:
v On z/OS, see “Invoking the comparison on z/OS” on page 176.
v On CMS, see “Update file ID” on page 184.
v On z/VSE, see “Invoking the comparison on z/VSE” on page 193.
v Dates, where applicable, in the heading lines of update files are in the format MM/DD/YYYY.

3. All “do not process” options, and DPLINE or CMPLINE process statements are invalid when used
with the process options UPDCMS8, UPDMVS8, UPDSEQ0, UPDLDEL, and UPDPDEL. The “do not
process” options are cancelled with error notification ASMF014.

Update files are normally used as input to post-processing programs and can be specified besides the
normal listing output file.

On the following pages, descriptions and examples are given of the contents of the update file produced
for each of the update (UPD...) process options.

In most of the examples shown, the same two input files are used. The contents of the old file are shown
in Figure 108. The contents of the new file are shown in Figure 109.

Revision file
The process option UPDREV produces an update file containing a copy of the new source text with
revision tags delimiting the changed text lines.

The UPDREV process option is available for LINE and WORD compare types.

UPDREV supports two different types of revision tags, one for SCRIPT/VS files and one for BookMaster
files. (Use the REVREF process statement (“Revision code reference” on page 245) to specify which type
of revision tag you want.)

Figure 110 on page 280 shows a SuperC UPDREV file with SCRIPT/VS revision tags (.rc on/off).

This line is reformatted; the spacing in the "new" file differs. 00000100
This line is the same in both files. 00000200
This line differs from the text in the "new" file. 00000300
This line is the same in both files. 00000400

Figure 108. The “Old” input file used in most of the update examples

This line is reformatted; the spacing in the "new" file differs. 00000100
This line is the same in both files. 00000200
This line differs from the text in the "old" file. 00000300
This line is the same in both files. 00000400
This line is in the "new" file, but not in the "old". 00000500

Figure 109. The “New” input file used in most of the update examples

Chapter 6. Using Enhanced SuperC 279

When the UPDREV update file in Figure 110 is processed by SCRIPT/VS, the final scripted output has
“|” revision characters in the left margin of the output document identifying the changed lines (those
between the SCRIPT/VS revision tags .rc 1 on and .rc 1 off).

Note: The revision character (“|” in the example in Figure 110) can be specified either by using a
REVREF process statement (see “Revision code reference” on page 245) or by having a SCRIPT/VS .rc.
revision tag as the first record in the new file. Subsequent changes to the source can therefore be
separately identified by using different revision characters.

Figure 111 shows a SuperC UPDREV file with BookMaster revision tags (:rev/:erev).

When the UPDREV update file in Figure 111 is processed by BookMaster, the final formatted output has
the revision character associated with the revision ID abc (as specified by a :revision. BookMaster tag in
the new input file) in the left margin of the output document identifying the changed lines (those between
the BookMaster revision tags :rev and :erev).

Note: The revision ID (abc in the example in Figure 111) is controlled by the REVREF process statement
(see “Revision code reference” on page 245). Subsequent changes to the source can therefore be separately
identified by using different revision IDs (which are associated with unique revision characters).

Revision file (2)
The process option UPDREV2 is identical to UPDREV with the exception that data between the following
BookMaster tags are not deleted in the update file:
:cgraphic.
:ecgraphic.

:fig.
:efig.

:lblbox.
:elblbox.

:nt.
:ent.

.rc 1 &vbar.

.rc 1 on
This line is reformatted; the spacing in the "new" file differs.
.rc 1 off
This line is the same in both files.
.rc 1 on
This line differs from the text in the "old" file.
.rc 1 off
This line is the same in both files.
.rc 1 on
This line is in the "new" file, but not in the "old".
.rc 1 off

Figure 110. Example of a UPDREV update file for SCRIPT/VS documents

This line is reformatted; the spacing in the "new" file differs.
This line is the same in both files.
This line differs from the text in the "old" file.
This line is the same in both files.
This line is in the "new" file, but not in the "old".

Figure 111. Example of a UPDREV update file for bookmaster documents

280 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

:screen.
:escreen.

:table.
:etable.

:xmp.
:exmp.

Update CMS sequenced 8 file
The process option UPDCMS8 produces update files that are generally created for input to the CMS
UPDATE command. The CMS UPDATE command is described in the z/VM CMS Command Reference
manual.

The UPDCMS8 process option is available for the LINE compare type only.

The old input file must have fixed-length 80-byte records with valid sequence numbers in columns 73
through 80. The new file must be fixed but may have a length less than or equal to 80.

The UPDCMS8 update file is fixed-length 80.

If the sequence numbers do not allow adequate room to insert changes from the new file, SuperC changes
the status of adjacent matched lines to find the room.

UPDCMS8 update files contain both CMS UPDATE control statements and source lines from the “new”
file. All UPDCMS8 control statements are identified by the characters “./” in columns 1 and 2 of the
80-byte record, followed by one or more spaces and a one-character control line identifier. The control
line identifiers are sequence (S), insert (I), delete (D), replace (R), and comment (*). Figure 112 shows an
example of a UPDCMS8 update file.

The example in Figure 112, has the following lines:

�1� Comment line. Lists the new file name and the date and time of the comparison.

�2� Comment line. Lists the old file name.

�3� Replacement control line. The first 8-digit numeric field is the sequence number (of the old file) of
the first input number to be replaced. The second 8-digit numeric field is the sequence number of
the old file that is the last record to be replaced. The dollar sign is an option separator field. The
third and fourth 8-digit fields represent the first decimal number to be used for sequencing the
substitute records and the decimal increment to be used in the sequencing.

In this example, the first line of the old file is being replaced with one line from the new file.

�4� The new record which has replaced the old record at sequence number 00000100.

�5� Another replacement control line.

�1� ./ * NEW: JLEVERIN TEST2 A 07/11/2008 11.35
�2� ./ * OLD: JLEVERIN TEST1 A
�3� ./ R 00000100 00000100 $ 00000140 00000040
�4� This line is reformatted; the spacing in the "new" file differs. 00000100
�5� ./ R 00000300 00000300 $ 00000340 00000040
�6� This line differs from the text in the "old" file. 00000300
�7� ./ I 00000400 $ 00001400 00001000
�8� This line is in the "new" file, but not in the "old". 00000500

Figure 112. Example of a UPDCMS8 update file

Chapter 6. Using Enhanced SuperC 281

�6� The new record which has replaced the old record at sequence number 00000300.

�7� Insert control line. After old line 4, there is a line inserted in the new file.

�8� The text of the inserted line.

Update control files
The process option UPDCNTL produces a control file that relates matches, insertions, deletions, and
reformats to:
v The relative line numbers of the old and new files (LINE compare type); see Figure 113.
v The relative word position of the old file (WORD compare type); see Figure 114 on page 283.
v The relative byte offset (BYTE compare type); see Figure 115 on page 284.

Note: No source or data from either input file is included in the update file produced by UPDCNTL.

Update control file (LINE Compare Type)

�1� Comment line. Lists the new file name and the date and time of the comparison.

�2� Comment line. Lists the old file name.

�3� Header Comment line. For information about the columns, see Table 27.

�4� Shows that line 1 of the new file is a reformatted line of line 1 of the old file.

�5� Line 2 from both files match.

�6� Line 3 of the new file replaces line 3 of the old file.

�7� Line 4 from both files match.

�8� At line 5 of the new file is an inserted line.

�9� Comment line. This is the end of the update file.

The following table shows the column numbers used for the UPDCNTL file:

Table 27. UPDCNTL update file format using LINE compare type

Column # Identifier Data Item

4-11 N-LINE-# New line number

13-20 O-LINE-# Old line number

22-29 MAT-LEN Match length

31-38 INS-LEN Insert length

40-47 DEL-LEN Delete length

49-56 REFM-LEN Reformat length

�1� * NEW: JLEVERIN TEST2 A 07/11/2008 12.45
�2� * OLD: JLEVERIN TEST1 A
�3� * N-LINE-# O-LINE-# MAT-LEN INS-LEN DEL-LEN REFM-LEN
�4� 00000001 00000001 00000001
�5� 00000002 00000002 00000001
�6� 00000003 00000003 00000001 00000001
�7� 00000004 00000004 00000001
�8� 00000005 00000005 00000001
�9� * END

Figure 113. Example of a UPDCNTL update file using line compare type

282 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Table 27. UPDCNTL update file format using LINE compare type (continued)

Column # Identifier Data Item

58-65 N-DP-LEN (Not shown) New “Do not Process” length

67-74 O-DP-LEN (Not shown) Old “Do not Process” length

76-80 N-MVL (Not shown) New “moved” line length.

Update control file (WORD compare type)

�1� Comment line. Lists the new file name and the date and time of the comparison.

�2� Comment line. Lists the old file name.

�3� Header comment line. For information about the columns, see Table 28.

�4� Beginning with line one column 1, of both files, the first twenty-seven words match. This takes us
to line 3.

�5� There is 1 word replaced in line 3. It begins in column forty of each file.

�6� Beginning from the change in �5�, there are 9 more words that match.

�7� A line of thirteen words was inserted at line 5.

�8� Comment line. Ends the update file.

The following table shows the column numbers used for the UPDCNTL file:

Table 28. UPDCNTL update file format using WORD compare type

Column # Identifier Data Item

4-11 N-LINE-# Beginning new line number

13-20 N-LN-LEN Number of lines

22-26 N-COL New column number (beginning of word)

28-35 WD-MAT-# Number of matching words

37-44 N-WD-INS Number of new inserted words

46-53 O-WD-DEL Number of old deleted words

55-62 O-LINE-# Beginning old line number

64-71 O-LN-LEN Number of old lines

73-77 O-COL Old column number

�1� * NEW: JLEVERIN TEST2 A 07/11/2008 12.17
�2� * OLD: JLEVERIN TEST1 A
�3� * N-LINE-# N-LN-LEN N-COL WD-MAT-# N-WD-INS O-WD-DEL O-LINE-# O-LN-LEN O-COL
�4� 00000001 00000003 00001 00000027 00000001 00000003 00001
�5� 00000003 00000001 00040 00000001 00000001 00000003 00000001 00040
�6� 00000003 00000002 00046 00000009 00000003 00000002 00046
�7� 00000005 00000001 00001 00000013
�8� * END

Figure 114. Example of a UPDCNTL update file using WORD compare type

Chapter 6. Using Enhanced SuperC 283

Update control file (BYTE compare type)

�1� Comment line. Lists the new file name and the date and time of the comparison.

�2� Comment line. Lists the old file name.

�3� Header comment line. For more information about the columns, see Table 29.

�4� First thirty-one (1E hex) bytes match.

�5� 1 byte is deleted.

�6� (Skipping several lines). 3 bytes of the new file replace 3 bytes of the old file.

�7� Fifty bytes inserted.

�8� Comment line. Ends the update file.

The following table shows the column numbers used for the UPDCNTL file:

Table 29. UPDCNTL update file format using BYTE compare type

Column # Identifier Data Item

4-11 N-BYTE-O New byte offset

13-20 O-BYTE-O Old byte offset

22-29 MAT-LEN Number of matching bytes

31-38 INS-LEN Number of inserted bytes

40-47 DEL-LEN Number of deleted bytes

Update long control
The process option UPDLDEL produces an update file that contains control records, matching new file
source records, inserted new file source records, and deleted old file source records.

The UPDLDEL process option is available for the LINE compare type only.

�1� * NEW: JLEVERIN TEST2 A 07/11/2008 12.23
�2� * OLD: JLEVERIN TEST1 A
�3� * N-BYTE-O O-BYTE-O MAT-LEN INS-LEN DEL-LEN
�4� 00000000 00000000 0000001E
�5� 0000001E 0000001E 00000001

0000001E 0000001F 00000008
00000026 00000027 00000001
00000026 00000028 00000002
00000028 0000002A 00000001
00000028 0000002B 00000004
0000002C 0000002F 00000001
0000002C 00000030 00000007
00000033 00000037 00000001
00000033 00000038 00000004
00000037 0000003C 00000001
00000037 0000003D 00000009
00000040 00000046 00000006
00000046 00000046 00000082

�6� 000000C8 000000C8 00000003 00000003
000000CB 000000CB 00000075

�7� 00000140 00000140 00000050
�8� * END

Figure 115. Example of a UPDCNTL update file using BYTE compare type

284 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Figure 116 shows an example of a UPDLDEL update file.

The control records are titled as follows:

*HDR1, *HDR2, *HDR3
Header titles and data

*M- Matched line sequence header

*I- Inserted line sequence header

*I-RP Inserted line sequence header for replacement lines

*I-RF Inserted line sequence header for reformatted lines

*D- Deleted line sequence header

*D-RP Deleted line sequence header for replacement lines

*D-RF Deleted line sequence header for reformatted lines

Header control records are full length records that delimit the copied file records. This allows you to
quickly find changed areas. The records look like the information about a LONG listing. The two input
files must both have the same fixed record length or each have a variable record length.

Update MVS sequenced 8 file
The process option UPDMVS8 produces a file that contains both control records and new file source lines
using sequence numbers from old file columns 73 to 80.

The UPDMVS8 process option is available for the LINE Compare Type only.

The format of the generated data may be suitable as input to the IEBUPDTE utility. See MVS/DFP Utilities
for information about the contents of this file. Figure 117 on page 286 shows an example of a UPDMVS8
update file created on CMS.

*HDR1 JLEVERIN TEST2 A 07/11/2008 14.58
*HDR2 JLEVERIN TEST1 A TYPE = UPDLDEL
*I-RF INS#= 1 N-REF#=000001 O-REF#=000001 *****ASMFSUPC CHANGE HEADER*****
This line is reformatted; the spacing in the "new" file differs. 00000100
*D-RF DEL#= 1 N-REF#=000001 O-REF#=000001 *****ASMFSUPC CHANGE HEADER*****
This line is reformatted; the spacing in the "new" file differs. 00000100
*M- MAT#= 1 N-REF#=000002 O-REF#=000002 *****ASMFSUPC CHANGE HEADER*****
This line is the same in both files. 00000200
*I-RP INS#= 1 N-REF#=000003 O-REF#=000003 *****ASMFSUPC CHANGE HEADER*****
This line differs from the text in the "old" file. 00000300
*D-RP DEL#= 1 N-REF#=000003 O-REF#=000003 *****ASMFSUPC CHANGE HEADER*****
This line differs from the text in the "new" file. 00000300
*M- MAT#= 1 N-REF#=000004 O-REF#=000004 *****ASMFSUPC CHANGE HEADER*****
This line is the same in both files. 00000400
*I- INS#= 1 N-REF#=000005 O-REF#=000004 *****ASMFSUPC CHANGE HEADER*****
This line is in the "new" file, but not in the "old". 00000500

Figure 116. Example of a UPDLDEL update file

Chapter 6. Using Enhanced SuperC 285

�1� Control record. Lists old file name.

�2� Control record. Shows record deleted at sequence number 100 on the old file.

�3� Inserted line from the new file.

�4� Control record. Shows record deleted at sequence number 300 on the old file.

�5� Inserted line from the new file.

�6� Inserted line from the new file.

The files to be compared must have fixed-length 80-byte records. They must also contain sequence
numbers.

Update prefixed delta lines
The process option UPDPDEL produces a variable-length update file that contains header records and
complete delta lines from the input files, up to a maximum of 32K bytes in each output line.

The UPDPDEL process option is available for the LINE compare type only.

Figure 118 shows an example of a UPDPDEL update file.

Prefix codes (I for insert and D for delete) together with the line number precede lines from the input
files. Sub-totals are shown before each group of flagged records:
v INS#= for the number of consecutive inserted records,
v DEL#= for the number of consecutive deleted records,
v RPL#= for the number of consecutive pairs of replaced records, and
v MAT#= for the number of intervening matched records.

The example in Figure 118 has the following lines:

�1� Comment line. Lists the new file name and the date and time of the comparison.

�2� Comment line. Lists the old file name.

�3� Header comment line.

�1� ./ CHANGE LIST=ALL OLD:JLEVERIN TEST1 A
�2� ./ DELETE SEQ1=00000100,SEQ2=00000100
�3� This line is reformatted; the spacing in the "new" file differs. 00000100
�4� ./ DELETE SEQ1=00000300,SEQ2=00000300
�5� This line differs from the text in the "old" file. 00000300
�6� This line is in the "new" file, but not in the "old". 00000500

Figure 117. Example of a UPDMVS8 update file

�1� * NEW: JLEVERIN TEST2 A 07/11/2008 12.08
�2� * OLD: JLEVERIN TEST1 A
�3� *ID- LINE# SOURCE LINE
�4� * RPL#= 00000001
�5� I - 00000001 This line is reformatted; the spacing in the "new" file differs. 00000100
�6� D - 00000001 This line is reformatted; the spacing in the "new" file differs. 00000100
�4� * RPL#= 00000001 MAT#= 00000001
�5� I - 00000003 This line differs from the text in the "old" file 00000300
�6� D - 00000003 This line differs from the text in the "new" file. 00000300
�7� * INS#= 00000001 MAT#= 00000001
�8� I - 00000005 This line is in the "new" file, but not in the old.
�9� * END 00000500

Figure 118. Example of a UPDPDEL update file

286 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

�4� Sub-total line showing that 1 replaced pair of records follow.

�5� The line that has replaced the line in the old file.

�6� The line in the old file that has been replaced.

�7� Sub-total line showing that 1 inserted record follows.

�8� The line that has been inserted in the new file.

�9� Comment line. Ends the update file.

Update sequenced 0 file
The process option UPDSEQ0 produces a control file that relates insertions and deletions to the relative
line numbers of the old file. UPDSEQ0 is like UPDCMS8, but uses relative line numbers instead of
sequence numbers from the old file.

The UPDSEQ0 process option is available for the LINE compare type only.

This update file is characterized by control statements followed by source lines from the new file. All
UPDSEQ0 control statements are identified by the characters “./” in columns 1 and 2 of the 80-byte
record, followed by one or more spaces and additional space-delimited fields. The control statements are
insert (I), delete (D), replace (R), and comment (*). Control statement data does not extend beyond
column 50. Figure 119 shows an example of a UPDSEQ0 update file.

�1� Comment line. Lists the new file name and the date and time of the comparison.

�2� Comment line. Lists the old file name.

�3� Replacement control record. Beginning at the first record of the old file, replace 1 record. The
numeric value after the dollar sign specifies the number of new file source lines that follow the
control record.

�4� Text of new file line to replace line 1.

�5� Replace the third record with 1 record.

�6� Text of new file line to replace line 3.

�7� Insert control line. Insert 1 line after record 4 of old file.

�8� Text of inserted line.

Update summary only files
The process option UPDSUMO produces an update file of 4 lines: new file name, old file name, column
headers, and a summary totals line.

The UPDSUMO process option is available for the LINE, WORD, and BYTE compare types.

�1� ./ * NEW: JLEVERIN TEST2 A 07/11/2008 13.34
�2� ./ * OLD: JLEVERIN TEST1 A
�3� ./ R 00000001 00000001 $ 00000001
�4� This line is reformatted; the spacing in the "new" file differs. 00000100
�5� ./ R 00000003 00000003 $ 00000001
�6� This line differs from the text in the "old" file. 00000300
�7� ./ I 00000004 $ 00000001
�8� This line is in the "new" file, but not in the "old". 00000500

Figure 119. Example of a UPDSEQ0 update file

Chapter 6. Using Enhanced SuperC 287

The summary totals line has a “T” in column 1. The summary statistics are located at fixed offsets in the
output line. The file has a line length of 132 bytes.

Update summary only file (LINE compare type)

�1� Comment line. Lists the new file name and the date and time of the comparison.

�2� Comment line. Lists the old file name.

�3� Comment line. Header line. Columns are explained in Table 30.

�4� Totals line.

In Figure 120, the update summary file is shown in split screen mode. The bottom half of the screen
shows the result of scrolling right to see the remainder of the member.

The following table shows the column numbers used to display the update information:

Table 30. UPDSUMO format using LINE compare type

Column # Identifier Data Item

NEW-PROC Number of new lines processed

OLD-PROC Number of old lines processed

NEW-INS Number of new line insertions

OLD-DEL Number of old line deletions

TOT-CHG Total number of line changes

TOT-RFM Total number of reformats

FI-PROC Total number of files/members processed

FI-DIFF Total number of files/members different

N-NOT-PD Total new files/members not processed

O-NOT-PD Total old files/members not processed

N-DP-LNS Total number of new “do not process” lines

O-DP-LNS Total number of old “do not process” lines

�1� * NEW: JLEVERIN TEST2 A 07/11/2008
�2� * OLD: JLEVERIN TEST1 A
�3� * NEW-PROC OLD-PROC NEW-INS OLD-DEL TOT-CHG TOT-RFM FI-PROC FI-DIFF
�4� T 00000005 00000004 00000002 00000001 00000003 00000001 00000001 00000001

. . (Continuation of previous data lines)

�1� 13.39
�2�
�3� N-NOT-PD O-NOT-PD N-DP-LNS O-DP-LNS
�4� 00000000 00000000 00000000 00000000

Figure 120. Example of a UPDSUMO file using LINE compare type

288 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Update summary only file (WORD compare type)

�1� Comment line. Lists the new file name and the date and time of the comparison.

�2� Comment line. Lists the old file name.

�3� Comment line. Header line. Columns are explained in Table 31.

�4� Totals line.

In Figure 121, the UPDSUMO file is shown in split screen mode. The bottom half of the screen is scrolled
right to show the remainder of the member.

The following table shows the column numbers used to display the update information:

Table 31. UPDSUMO format using WORD compare type

Column # Identifier Data Item

NEW-PROC Number of new words processed

OLD-PROC Number of old words processed

NEW-INS Number of new word insertions

OLD-DEL Number of old word deletions

TOT-CHG Total number of word changes

FI-PROC Total number of files/members processed

FI-DIFF Total number of files/members different

N-NOT-PD Total new files/members not processed

O-NOT-PD Total old files/members not processed

�1� * NEW: JLEVERIN TEST2 A 07/11/2008
�2� * OLD: JLEVERIN TEST1 A
�3� * NEW-PROC OLD-PROC NEW-INS OLD-DEL TOT-CHG FI-PROC FI-DIFF
�4� T 00000049 00000037 00000013 00000001 00000013 00000001 00000001

. . (Continuation of previous data lines)

�1� 13.48
�2�
�3� N-NOT-PD O-NOT-PD
�4� 00000000 00000000

Figure 121. Example of a UPDSUMO file using WORD compare type

Chapter 6. Using Enhanced SuperC 289

Update summary only file (BYTE compare type)

�1� Comment line. Lists the new file name and the date and time of the comparison.

�2� Comment line. Lists the old file name.

�3� Comment line. Header line. Columns are explained in Table 32.

�4� Totals line.

In Figure 122, the UPDSUMO file is shown in split screen mode. The bottom half of the screen shows the
result of scrolling right to see the remainder of the member.

The following table shows the column numbers used to display the update information:

Table 32. UPDSUMO format using BYTE compare type

Column # Identifier Data Item

NEW-PROC Number of new bytes processed

OLD-PROC Number of old bytes processed

NEW-INS Number of new byte insertions

OLD-DEL Number of old byte deletions

TOT-CHG Total number of byte changes

FI-PROC Total number of files/members processed

FI-DIFF Total number of files/members different

N-NOT-PD Total new files/members not processed

O-NOT-PD Total old files/members not processed

CMS file selection list
When you are dealing with a group of CMS files (or library members), some or all which you want to use
as input to a comparison or search, you need to use the CMS file selection list.

In the case of a comparison, the CMS file selection list enables you to specify which files (or members) in
the new group are to be compared with which files (or members) in the old group.

In the case of a search, the CMS file selection list enables you to specify which files (or members) in the
group are to be searched.

�1� * NEW: JLEVERIN TEST2 A 07/11/2008
�2� * OLD: JLEVERIN TEST1 A
�3� * NEW-PROC OLD-PROC NEW-INS OLD-DEL TOT-CHG FI-PROC FI-DIFF
�4� T 00000400 00000320 00000089 00000009 00000095 00000001 00000001

. . (Continuation of previous data lines)

COMMAND ===> _ SCROLL ===> PAGE
�1� 13.51
�2�
�3� N-NOT-PD O-NOT-PD
�4� 00000000 00000000

Figure 122. Example of a UPDSUMO file using BYTE compare type

290 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

To view the CMS file selection list for the files (or members) that you want to compare or search, you use
the Selection List Menu.

Getting to the selection list menus
There are two formats of the Selection List Menu. One format is for comparisons and the other format is
for searches. (Each format varies slightly depending on whether you are dealing with a group of files or a
group of library members.)

The appropriate format of the Selection List Menu is displayed after you have entered the relevant group
details in either the Primary Comparison Menu or the Primary Search Menu:
v The Selection List field must contain an “*” (asterisk)
v For a comparison of a group of files, the New File ID or the Old File ID must contain an “*”
v For a comparison of a MACLIB or TXTLIB, the Member Name must contain an “*”
v For a search of a group of files, the Search File ID must contain an “*”
v For a search of a MACLIB or TXTLIB, the Member Name must contain an “*”

After you have entered the above details in the Primary Comparison Menu or the Primary Search Menu,
press Enter to display the corresponding Selection List Menu.

In the case of a comparison, SuperC creates two lists: one list of the files (or members) in the new group
and one list of the files (or members) in the old group. In the case of a search, SuperC creates a list of the
files (or members) in the search group.

COMMAND field
At the top of the Selection List Menu is a COMMAND entry field. This field allows you to enter any of
the selection menu commands: ADD, CANCEL, DOWN, LOCATE, RESET, SELECT, SELECT *, or UP.

For details, see “Selection Menu Commands”.

Note: You cannot enter CP or CMS commands in the COMMAND field.

The selection list menu (comparison)
Figure 123 shows an example of a Selection List Menu for a comparison of two file groups. The New File
ID was entered as TEMP * A and the Old File ID was entered as * TEMP A.

Comparison scrollable windows: The LEFT SCROLL WINDOW consists of the following columns:

- (1 of 6) ---------- SuperC Selection List --------- (1 of 4) -
COMMAND ==>

Use select codes: S (Select), X (Exclude), or I (Information).
Commands: ADD, CANCEL, DOWN, LOCATE, RESET, SELECT, SELECT *, and UP.

LEFT SCROLL WINDOW <===== ACTIVE WINDOW RIGHT SCROLL WINDOW
Sel New-File-List Old-File-Name Sel Old-File-List

TEMP LIST3820 A1 ERROR TEMP A1
TEMP NOTE A0 INDEX TEMP A1
TEMP SCRIPT A1 MSG TEMP A1
TEMP SRCHFOR A1 TEMP TEMP A1
TEMP SUPERC A1
TEMP TEMP A1 TEMP TEMP A1

...

1-Help 3-End 7-Up 8-Down 10-Top 11-Bottom 12-Change Window

Figure 123. Example of a CMS selection list menu (file group comparison)

Chapter 6. Using Enhanced SuperC 291

Sel A single-character selection code field. Allows you to enter one of the Selection Codes: S, X, I, or
space (to unselect). For details, see “Search scrollable window” on page 293.

New-File-List
Alphabetical list of files generated by SuperC as a result of the New File ID (containing an “*”)
entered on the Primary Comparison Menu.

New-Member
(Not shown.) Alphabetical list of members generated by SuperC as a result of the Member Name
(containing an “*”) entered on the Primary Comparison Menu.

Old-File-Name
This field must be filled with a valid ID from the old candidate list (right scroll window) to
indicate with which old file the new file is to be compared.

You can manually pair new and old files by entering an “S” in the SEL column in the left scroll
window and an “S” in the SEL column in the right scroll window. Then press Enter and the old
file ID is entered alongside the new file ID.

Alternatively, you can enter the old file ID directly in the Old-File-Name field.

Note: Initially, SuperC automatically lists any items from the Old-File-List whose mask matches
the mask from the New-File-List (see “How SuperC pairs CMS files and members” on page 295).

Old-Member
(Not shown.) This field is comparable to the Old-File-Name, but for MACLIB or TXTLIB
members.

The RIGHT SCROLL WINDOW consists of the following columns:

Sel A single-character selection code field. Allows you to enter one of the Selection Codes: S, X, I, or
space (to unselect). For details, see “Search scrollable window” on page 293.

Old-File-List
Alphabetical list of files generated by SuperC as a result of the Old File ID (containing an “*”)
entered on the Primary Comparison Menu.

Old-Member-List
(Not shown.) Alphabetical list of members generated by SuperC as a result of the Member Name
(containing an “*”) entered on the Primary Comparison Menu.

The arrow (<=====) on line 7 of the menu, indicates which “window” is active. (Use PF12 to toggle the
active window between left and right.)

The selection list menu (search)
Figure 124 on page 293 shows an example of a Selection List Menu for a search of a file group. The New
File ID was entered as TEMP * A.

292 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Search scrollable window: The Selection List Menu for the SuperC Search has only one window.

When you are searching a group of files, the search scrollable window shows an alphabetical list of the
files generated by SuperC as a result of the New File ID (containing an “*”) entered on the Primary
Comparison Menu.

When you are searching a MACLIB or TXTLIB, the search scrollable window shows an alphabetical list of
the members generated by SuperC as a result of the Member Name (containing an “*”) entered on the
Primary Comparison Menu.

The search scrollable window consists of the following columns:

Sel A single-character selection code field. Allows you to enter one of the Selection Codes: S, X, I, or
space (to unselect). For details, see “Search scrollable window.”

When searching files:

File name File type Fm
The search file ID.

Format
F for Fixed; V for Variable.

Lrecl Record length.

Recs Number of records.

Blocks
Number of blocks.

Date Date file was last modified.

Time Time file was last modified.

When searching MACLIB or TXTLIB libraries (not shown):

New-Member
The member from the MACLIB or TXTLIB to be searched.

Selection Codes
The following selection codes can be entered in the selection (“SEL”) field on the Selection List
Menu:

S Select the item.

X Exclude the item from the list.

- (1 of 6) ---------- SuperC Selection List --------------------------
COMMAND ==>

Use S (Select) or X (Exclude) select codes.
Commands: ADD, CANCEL, DOWN, LOCATE, RESET, SELECT, SELECT *, and UP.

Sel Filename Filetype Fm Format Lrecl Recs Blocks Date Time
TEMP LIST3820 A1 V 3728 47 3 9/11/03 13:31:52
TEMP NOTE A0 V 79 121 2 7/31/03 10:52:30
TEMP SCRIPT A1 V 72 117 2 9/11/03 13:42:00
TEMP SRCHFOR A1 V 111 14 1 9/15/03 14:55:44
TEMP SUPERC A1 V 111 212 5 9/15/03 17:48:33
TEMP TEMP A1 V 16 3 1 9/15/03 14:40:29

...

1-Help 3-End 7-Up 8-Down 10-Top 11-Bottom

Figure 124. Example of a CMS selection list menu (file group search)

Chapter 6. Using Enhanced SuperC 293

I Display information for this item. (“I” is not supported for search file selection as this
information is already shown).

(space)
“Unselect” the item.

Selection Menu Commands
The following commands may be entered on the Command line.

ADD Add additional files/members to the group in the active window. Previously matched
files/members are unaltered. The add-mask may be a file/member name or may contain
wildcard characters.

Format
ADD add_mask

The abbreviation “A” is also acceptable.

Example
ADD AB* * A

This adds all those files on the A mini-disk whose file name starts with “AB”

BOTTOM
Scrolls the active window to the last element in the list.

The abbreviations “BOT” and “B” are also acceptable.

CANCEL
Cancel all selections. Return to the Primary Comparison Menu or the Primary Search Menu.

DOWN
Scrolls the active window down one page (no operands) or the number of entries as indicated by
the operand value. “DOWN” may also be indicated by using the PF8 key and a value operand as
the command.

Format
DOWN value

The abbreviation “D” is also acceptable.

LOCATE
The LOCATE command scrolls to file (or member) you specify. If the specified name is not in the
list, the data is scrolled to the file (or member) that precedes the specified name (in alphabetic
sequence). LOCATE applies to the active window.

Format
LOCATE name

Name is a fully qualified CMS file ID for file list and a member name for member list.

The abbreviations “LOC” and “L” are also acceptable.

RESET
The RESET command may be used to restore the selection list to its original status.

SELECT
The SELECT command can be used to select a file (or member) that is contained within the
selection list of the active window. If the specified name is not found, the list is scrolled to the file
(or member) that precedes the specified name (in alphabetic sequence).

Format
SELECT name

Name is a fully qualified CMS file ID for file list and a member name for member list.

294 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

The abbreviations “SEL” and “S” are also acceptable.

SELECT *
Selects all new entries (left window) that are paired to old entries (right window).

Format
SELECT *

The abbreviations “SEL *” and “S *” are also acceptable.

TOP Scrolls the active window to the first element in the list.

UP Scrolls the active window up one page (no operands) or the number of entries as indicated by the
operand value. “UP” may also be indicated by using the PF7 key and a value operand as the
command.

Format
UP value

File/Member Selection List PF Key Definitions
The PF keys which can be used while displaying the selection list are shown at the bottom of the
screen. The following PF keys are defined on the Selection List Menu:

PF1 Help. PF1 displays detailed help information about the file selection list menu and
commands.

PF3 Menu. PF3 exits this menu and executes the comparison (or search) if selections were
made.

PF7 Up. PF 7 scrolls the list in the active window up one page or until the top of the list is
reached. If a number is entered in the command field, PF7 7 scrolls up that number of
lines (unless the top of the list is reached first).

PF8 Down. PF8 scrolls the list in the active window down one page or until the bottom of the
list is reached. If a number is entered in the command field, PF8 scrolls down that many
line (unless the bottom of the list is reached first).

PF10 Top. PF10 scrolls the active window to the top of the list.

PF11 Bottom. PF11 scrolls the active window to the bottom of the list.

PF12 Change-Window. PF12 toggles the active window from right to left or from left to right.
PF12 is not applicable to the SuperC Search which has only one window.

How SuperC pairs CMS files and members
It is important to understand how SuperC pairs files and members. Careless (or too frequent) use of the
wildcard character (“*”) can result in the wrong items being paired.

Pairing Files
SuperC pairs files in two stages. First, SuperC uses the LISTFILE command to collect the group of file
names. Second, from this collection, SuperC pairs the new with the old based upon the asterisk-mask.

The asterisk-mask can be up to 16 characters long, 8 from the fn and 8 from the ft. Intervening spaces are
discarded. The effects of this can be seen with the following example.

File Group ID File ID Asterisk-mask
* * A XYZ ABC A XYZABC
* ABC A XYZ ABC A XYZ
XYZ * A XYZ ABC A ABC
*YZ *BC A XYZ ABC A XA

Chapter 6. Using Enhanced SuperC 295

The matching of pairs involves only the asterisk-masks. If the asterisk-masks are equal, the files are
paired.

For example, if you had the following files on your A minidisk:

SUP PLI A
BKSUP PLI A
BKBKSUP PLI A

and specified *SUP PLI A on the New File ID field and *BKSUP PLI A on the Old File ID field, then
SuperC generates the following collections using LISTFILE:

For New File Asterisk-mask For Old File Asterisk-mask
BKBKSUP PLI A “BKBK” BKBKSUP PLI A “BK”
BKSUP PLI A “BK” BKSUP PLI A “”
SUP PLI A “”

For the new file BKBKSUP PLI A, SuperC substitutes “BKBK” for the asterisk-mask. Similarly, for new
files BKSUP PLI A and SUP PLI A, SuperC substitutes “BK” and the null string for the asterisk mask. For
the old files BKBKSUP PLI A and BKSUP PLI A, SuperC substitutes “BK” and the null string.

SuperC pairs the files when the asterisk-mask of the new file is the same as the asterisk-mask of the old
file. Continuing with our example, SuperC pairs the following files:

New File Old File
BKSUP PLI A paired to BKBKSUP PLI A
SUP PLI A paired to BKSUP PLI A

The first 2 files are paired together because the character string “BK” replaces the asterisk-mask of both
files. The second 2 files are paired together because the null string is substituted for the asterisk-mask of
both files.

Pairing members
In a similar way to pairing files, pairing members from MACLIBs or TXTLIBs firstly involves the
members being selected.

To be selected for the new list, the member must be a member of the new MACLIB or TXTLIB and have
the same prefix as the prefix on the new Member field. To be selected for the old list, the member must be
a member of the old MACLIB or TXTLIB and have the same prefix as the prefix on the old Member field.

For example:
New File ID ==> new maclib a Member ==> abc*
Old File ID ==> old maclib a Member ==> *

The new list consists of all members of NEW MACLIB A with a name having a prefix of “ABC” and the
old list consists of all members of OLD MACLIB A.

Members are paired if the member name appears in both lists. For example, if the member name
“ABCD” appears in both lists, the Member Selection List pairs the name.

296 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

CMS files used by SuperC
In addition to the files that you specify to be compared or searched, SuperC uses a number of CMS work
files.

These work files are listed here:

SUPERC OLIST A
The default file ID for the Options List file when invoking the SuperC Comparison on the CMS
command line. (The Options List file holds a set of default options.)

Note: The OLF keyword allows you to specify an alternative file ID for the Options List file.

SRCHFOR OLIST A
The default file ID for the Options List file when invoking the SuperC Search on the CMS
command line. (The Options List file holds a set of default options.)

Note: The OLF keyword allows you to specify an alternative file ID for the Options List file.

SUPERC NAMES *
Contains optional CMS command line information for the SuperC Comparison. (In most cases,
the Options List file holds command line requirements.)
v If no equivalent options are specified in the CMS command line or the Options List file

(user-specified or default), then options from the LINE_DEF tag of the SUPERC NAMES * file
are used.

v Printer information for “WIDE” printing, if required, can be held in the SUPERC NAMES *
file.

SUPERC SYSIN A
The default file ID for the process statements file when using the SuperC Comparison. A new
SUPERC SYSIN A file (erasing the contents of an existing SUPERC SYSIN A file) is created when
(comparison) process statements are selected using the Process Statements Entry Menu.

SRCHFOR SYSIN A
The default file ID for the process statements file when using the SuperC Search. A new
SRCHFOR SYSIN A file (erasing the contents of an existing SRCHFOR SYSIN A file) is created
when (search) process statements are selected using the Process Statements Entry Menu.

SUPERC $SYSIN$ A
A temporary control file used for passing CMS control line statement directives to SuperC.

Reasons for differing comparison results
When comparing two sets of input date, it is possible that different compare types (FILE, LINE, WORD,
and BYTE) gives slightly different results.

In order for SuperC to detect only the types of differences that are of interest to you, make sure that you
are using the most appropriate compare type and, if necessary, the appropriate process options and
process statements to select only the data that you actually want compared.

Here are some of the reasons why different compare types can produce different results:
v FILE and BYTE comparisons inspect the complete file (every byte) for differences. LINE and WORD

comparisons use designated columns that are either specified by you or are within the default range of
columns assigned by SuperC.
For example, a FILE comparison of a file with fixed-length records of eighty bytes compares all
columns (that is, all bytes), whereas a LINE comparison of the same file compares columns 1 to 72 (the

Chapter 6. Using Enhanced SuperC 297

default). Since the sequence number columns in the file are ignored in the LINE compare, the final
results can be different. In this case, for consistent results, specify the LINE compare type and the
NOSEQ process option.

v LINE comparisons “pad” the shorter records with spaces when comparing files with different record
lengths. However, BYTE comparisons only “recognize” spaces when they are already present in the
input file.

v For files with input line lengths <= 256, a LINE comparison is performed after padding the lines to the
longest line length. Consequently two lines, originally of unequal length, compare equally only if the
spaces at the end of the longer line coincide with the shorter line's space padding.

v For files with input line lengths > 256, a LINE comparison is performed on the lines without space
padding. As a result, lines of unequal length are always a mismatch.

v Different compare types have different sensitivity to being resynchronized. Synchronization for a LINE
comparison begins at the beginning of a line and ends at the end of a line. Synchronization for a
WORD comparison begins anywhere on a line on any word boundary and ends at the end of a word.
Synchronization for a BYTE comparison extends only one byte anywhere on a line.

v LINE comparisons detect lines that have been reformatted. However, reformatted lines have no effect
on WORD comparisons as spaces and blank lines are ignored.

v Results may differ depending on which input file is specified as the “new” file and which is specified
as the “old” file. The matching algorithm is sensitive to the largest matched set it finds between files.
There may be occasions where more than one set of matched data meets this criteria. The rules for
deciding which set to choose among the equals depends upon the contents of each file and which file
was nominated as the “new” file.

Return codes
SuperC displays the completion message at the top of the Primary Comparison Menu or at the top of the
Primary Search Menu. The message is an interpretation of the following return codes.

Table 33. SuperC return codes

Code Meaning

0 Normal completion.

Comparison
The input files are the same. No differences found.

Search No matches found in the input file.

1 Normal completion.

Comparison
Differences were found in the input files.

Search Matches found in the input file.

4 WARNING. Erroneous input was detected. Files were compared but results may not be as
expected. Check listing for more information.

6 WARNING. Old file did not contain proper sequence numbers, or the sequence number intervals
were not sufficiently large to contain insert activity (UPDCMS8 and UPDMVS8).

8 ERROR. Error on old input file. Files were NOT compared. Check listing for more details.

16 ERROR. Error on new or search source file. The operation was NOT performed. Check listing for
more details.

20 ERROR. I/O error writing to update file, FILEDEF missing, or APNDUPD process option
cancelled because of inconsistent file attributes.

24 ERROR. I/O error writing to the output listing file.

25 ERROR. The old output file attributes are not consistent with the new listing requirements. The
APNDLST process option can not be accepted and the operation is immediately terminated.

298 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Table 33. SuperC return codes (continued)

Code Meaning

26 ERROR. The output file caused a “disk full”condition. The output listing is incomplete.

27 ERROR. The output file is a “read-only” disk. All I/O operations to the disk is suppressed.

28 ERROR. No data was compared because of invalid file names, no commonly named members of
both input file groups, or one or both input files were empty.

32 ERROR. Insufficient storage was available for SuperC to execute. Refer to output listing for more
details.

36 ERROR. z/VSE file would not open.

40 ERROR. z/VSE label information not available.

48 ERROR. z/VSE Librarian member not found.

52 ERROR. z/VSE VSAM Showcat failed.

56 ERROR. z/VSE device type not supported.

60 ERROR. Wrong length record read on tape input.

SuperC messages
There are three levels of SuperC messages:
v Informational messages do not affect the return code and SuperC completes normally.
v Warning messages return a code of 4 to 7, processing is completed, but some user option/operation

may not be completely performed.
v Error messages are accompanied with a return code of 8 or greater and the processing is prematurely

terminated.

This section explains the SuperC message format and the messages you may receive.

Each of the messages issued by SuperC is of the form:

Message format

ASMFnnns

where:

ASMF is the program identifier for SuperC

nnn represents a particular message number

s is the message severity level:

I Informational message

W Warning message

E Error message

ASMF001I EMPTY COMPARE SET, INVALID
NAMES, NO COMMON NAMED
EMPTY FILES/DATA SETS, OR ZERO
COMPARE AFTER FILTERED.

Explanation: No data has been found to be compared.

System action: The SuperC run continues.

Programmer response: Check that the file and
member names have been entered correctly. Also, check
that the parameters for any select, focus/exclude
options are correct.

See “Process options” on page 216 and “Process
statements” on page 227.

ASMF001I

Chapter 6. Using Enhanced SuperC 299

ASMF002I NO UPDATE FILE/DATA SET
GENERATED FOR UPDCMS8 OR
UPDMVS8 OPTIONS WHEN NO
INPUT DIFFERENCES ARE FOUND.

Explanation: No differences in the input have been
found. The update process option specified does not
create an output update file in this situation.

System action: The SuperC run continues.

Programmer response: None.

ASMF003I THE COMPARISON OPERATION WAS
EXECUTED UNDER STORAGE
CONSTRAINTS THAT MAY AFFECT
RESULTS/THROUGHPUT.

Explanation: Insufficient storage available for normal
processing. Results are unpredictable. Output may be
formatted incorrectly.

System action: The SuperC run continues.

Programmer response: Specify a larger region
parameter on the JCL and resubmit the job.

ASMF004I LISTING LINES MAY BE TRUNCATED
DUE TO LIMITING OUTPUT LINE
WIDTH.

Explanation: The length of the data being printed is
less than the length of one of the records. This is
normal for a NARROW listing of 80 character records.

System action: The SuperC run continues.

Programmer response: The maximum listing length is
80 characters. If the data has records greater than 80,
the part after the 80th character is not displayed. If the
length of the data is between 56 and 80 characters, the
WIDE option gives a side-by-side listing of 80
characters from each file.

See “Process options” on page 216.

ASMF005I NO DATA SEARCHED INVALID
NAME(S), EMPTY MEMBERS
PROCESSED OR ZERO SEARCH SET
AFTER INPUT FILTERING.

Explanation: No data has been found to be searched.

System action: The SuperC run continues.

Programmer response: Check that the file and
member names have been entered correctly. Also, check
that the parameters for any SELECT,
FOCUS/EXCLUDE process options are correct.

See “Process options” on page 216.

ASMF006I UPDATE PROCESSING DETECTED
SEQUENCE NUMBERING ERRORS.

Explanation: The sequence numbers on one or both
input files have found to be incorrect.

System action: The SuperC run continues.

Programmer response: Check sequence numbering on
input.

ASMF007I MOVED LINE FLAGGING ONLY
VALID FOR FIRST 32K LINES
PORTION OF COMPARE OPERATION
PER DATA SET (OR FILE).

Explanation: Process option FMVLNS (Flag Moved
Lines) restricted to a maximum of 32K “blocks” of
moved lines.

System action: The SuperC run continues.

Programmer response: None.

ASMF009W GWCBL OPTION AND Y2DTONLY
MUTUALLY EXCLUSIVE. GWCBL IS
IGNORED.

Explanation: GWCBL and Y2DTONLY process options
cannot be used together.

System action: The SuperC run continues (without
GWCBL process option).

Programmer response: None.

ASMF010W process-option PROCESS OPTION
PARAMETER IS NOT A VALID
PROCESS OPTION. IT IS IGNORED.

Explanation: process-option is not a valid process
option keyword and has been ignored.

System action: The SuperC run continues.

Programmer response: Check that the process options
have been entered correctly.

See “Process options” on page 216.

ASMF011W start-value SPECIFIED START VALUE
GREATER THAN STOP VALUE. STOP
VALUE CHANGED TO MAXIMUM
VALUE.

Explanation: When nominating a range, the start
value for the range has been specified with value
greater than the stop value for the range. SuperC has
attempted to accommodate the range by extending the
stop value to the maximum value for the line or file
concerned.

System action: The SuperC run continues.

Programmer response: Check start and stop values for
ranges.

ASMF002I • ASMF011W

300 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

ASMF012W SRCHFOR STATEMENT(S) MISSING
FOR SEARCH-FOR COMPARE TYPE
REQUEST. ZERO LINES WILL BE
INSPECTED.

Explanation: SuperC expected 1 or more SRCHFOR
process statements to be present (specifying the string
or strings to be searched for) but none were found. No
records searched.

System action: The SuperC run continues.

Programmer response: Check that “search string” is
being supplied to SuperC correctly.

See (z/OS) “Invoking the search on z/OS” on page 199,
(CMS) “Invoking the search on CMS using menu
input” on page 200.and “Invoking the search on CMS
using command line input” on page 207, (z/VSE)
“Invoking the search on z/VSE” on page 213.

ASMF013W CERTAIN "DO NOT PROCESS"
OPTIONS ARE REJECTED DUE TO
LINE LENGTHS > 256. OPTIONS
RESERVED FOR PROGRAM SOURCE
DATA.

Explanation: “Do not process” options are not allowed
if line > 256 characters. These options are primarily for
source text. The DPLINE process statement is allowed
in these cases.

System action: The SuperC run continues.

Programmer response: Either use the DPLINE
statement or modify the data before comparing.

ASMF014W UPDATE OPTION CONFLICTS WITH
"DO NOT PROCESS" OPTION
SELECTION. "DO NOT PROCESS"
OPTIONS IGNORED.

Explanation: The update process option specified is
incompatible with the “Do not process” (DP...) process
options specified.

System action: The SuperC run continues.

Programmer response: Check process options used.

See “Process options” on page 216.

ASMF015W UPDMVS8 AND UPDCMS8 PROCESS
OPTIONS ARE ONLY ALLOWED
WITH FIXED 80 RECORDS.

System action: The SuperC run continues. No update
file is created.

Programmer response: Check that the appropriate
update process option is being used for the input file.

See “Process options” on page 216.

ASMF016W MOVE LINE DETECTION
RESTRICTED TO LINES <= 256
LRECL. OPTION IS IGNORED.

Explanation: Process option FMVLNS is restricted to
lines <= 256 characters.

System action: The SuperC run continues.

Programmer response: None.

ASMF017W file-name - SELECT MEMBER WAS NOT
FOUND.

Explanation: The member or file in the SELECT
process statement could not be found.

System action: The SuperC run continues.

Programmer response: Check that the member/file
name in the SELECT process statement is correct. Also,
check that the “group” from which the member/file is
to be selected has been specified correctly.

See “Process statements” on page 227.

ASMF018W file-name1:file-name2 SELECT
MEMBER-PAIR WAS NOT FOUND.

Explanation: One or both of the members or files in
the SELECT process statement could not be found.

System action: The SuperC run continues.

Programmer response: Check that both member/file
names have been specified correctly.

See “Process statements” on page 227.

ASMF019W AGING PARAMETER IS INVALID

Explanation: Aging parameter in NY2AGE/OY2AGE
is not numeric. It should be a value between 1 and 999.

System action: The SuperC run continues.

Programmer response: Change NY2AGE/OY2AGE
aging parameter to a valid value.

ASMF020W Y2DTONLY OPTION IGNORED AS
THERE ARE NO VALID DATE
DEFINITIONS.

Explanation: A Compare Dates Only (Y2DTONLY)
process option has been specified but no dates have
been defined by Date Definition (NY2C, NY2Z, NY2D,
NY2P, OY2C, OY2Z, OY2D, OY2P) process statements.

System action: The SuperC run continues.

Programmer response: Use appropriate Date
Definition process statements to define the dates to be
compared.

See “Process options” on page 216.

ASMF012W • ASMF020W

Chapter 6. Using Enhanced SuperC 301

ASMF021W SYSIN ALTERNATE DDNAME
PARAMETER INVALID.

Explanation: The name supplied is not a valid DD
name or was not correctly supplied within parentheses.

System action: The SuperC run continues without
SYSIN process option.

Programmer response: Ensure the rules for valid DD
names are followed.

See “Process options” on page 216.

ASMF022W compare-type COMPARE TYPE AND
THIS PROCESS STATEMENT ARE
INCOMPATIBLE. STATEMENT
IGNORED.

Explanation: The compare type specified (FILE, LINE,
WORD, or BYTE) is not valid for the process statement
that has been specified.

System action: The SuperC run continues.

Programmer response: Change compare type to one
that is valid for the process statement involved.

See “Process statements” on page 227.

ASMF023W UNRECOGNIZED OR INVALID
PROCESS STATEMENT KEYWORD.

Explanation: Keyword not valid for the process
statement specified

System action: The SuperC run continues.

Programmer response: Check if the process statement
involved requires a keyword. If so, ensure a valid
keyword is used.

See “Process statements” on page 227.

ASMF024W EXTRA DATA DETECTED AFTER
NORMAL STATEMENT END.
STATEMENT ACCEPTED WITH
WARNING NOTIFICATION.

Explanation: Extraneous data or incorrect syntax.

System action: The SuperC run continues.

Programmer response: Check format of statement.

See “Process options” on page 216 and “Process
statements” on page 227.

ASMF025W INVALID PROCESS STATEMENT
DATA-VALUE/OPERAND, EXTRA
DATA OR EXCEEDS COLUMN 72.
STMT/OPERAND IGNORED.

Explanation: Incorrect syntax for process statement.

System action: The SuperC run continues.

Programmer response: Check required syntax for
process statement.

See “Process statements” on page 227.

ASMF026W THE CMPBOFS STATEMENT AND
UPDCNTL CONFLICT. STATEMENT
IGNORED.

Explanation: Cannot use a CMPBOFS process
statement with UPDCNTL process option.

System action: The SuperC run continues. CMPBOFS
process statement ignored.

Programmer response: Change process options or
process statements as necessary.

ASMF028W statement-type STATEMENT CONFLICTS
WITH SPECIFIED UPDATE OPTIONS.
STATEMENT IGNORED.

Explanation: The type of statement specified is not
compatible with one or more of the update process
options specified.

System action: The SuperC run continues.

Programmer response: See “Process options” on page
216 and “Process statements” on page 227.

ASMF029W A SELECT PROCESS STATEMENT IS
INVALID WITH SEQUENTIAL
FILES/DATA SETS. STATEMENT
IGNORED.

Explanation: SELECT process statements can only be
used to select members/files from a “group”.

System action: The SuperC run continues.

Programmer response: See “Process statements” on
page 227.

ASMF030W THE SELECT STATEMENT HAS AN
INVALID MEMBER NAME OR
IMPROPER OPERAND FORMAT.
STMT/MEMBER IGNORED.

Explanation: Incorrect content or syntax.

System action: The SuperC run continues.

Programmer response: Check that the member and
file names have been entered correctly in the SELECT
process statement.

See “Process statements” on page 227.

ASMF031W AN INVALID START COLUMN VALUE
WAS SPECIFIED.

Explanation: Missing, non-numeric, or otherwise
invalid “start column” parameter specified.

System action: The SuperC run continues.

ASMF021W • ASMF031W

302 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Programmer response: Check that details have been
entered correctly and in accordance with the required
syntax.

See “Process options” on page 216 and “Process
statements” on page 227.

ASMF032W COLUMN VALUES MUST BE IN
ASCENDING SEQUENCE.
STATEMENT IGNORED.

Explanation: Column values not in ascending
sequence or, possibly, statements out of sequence.

System action: The SuperC run continues.

Programmer response: Check that SuperC receives
column numbers/ranges in ascending sequence such
that a record can be scanned sequentially from “left to
right”.

ASMF033W CMPCOLM RANGE STARTS WITH A
VALUE EXCEEDING THE MAXIMUM
PROCESSING LENGTH. STATEMENT
TERMINATED.

Explanation: The “start_column” specified in the
CMPCOLM process statement is greater than the
logical record length of the file.

System action: The SuperC run continues.

Programmer response: Correct the column/range
specified in the CMPCOLM process statement.

ASMF034W CMPCOLM STMT(S) HAS TOO MANY
RANGES. ONLY FIRST 15 RANGES
WILL BE USED.

Explanation: More than the permitted maximum of 15
ranges/individual columns specified for the
CMPCOLM process statement. Extraneous information
ignored.

System action: The SuperC run continues.

Programmer response: Limit ranges/individual
columns to a maximum of 15 for each run of SuperC.
Additional ranges/individual columns can be specified
in a separate run.

ASMF035W INVALID CHANGE TEXT
COMBINATION OF NEW TEXT > OLD
TEXT AND LINE LENGTHS > 256
ATTRIBUTE.

Explanation: The length of the search text in a
NCHGT or OCHGT process statement can not be
greater than the length of the change text when a
record is greater than 256 characters.

System action: The SuperC run continues.

Programmer response: Correct process statement.

ASMF036W SELECT STATEMENTS VALID ONLY
WITH /PDS/MACLIBS/TXTLIBS OR "*"
FILE NAMES. STATEMENT IGNORED.

Explanation: SELECT process statements can only be
used to select members/files from a “group”.

System action: The SuperC run continues.

Programmer response: See “Process statements” on
page 227.

ASMF037W DPLINEC MUST BE PRECEDED BY A
VALID DPLINE/D PLINEC
STATEMENT. STATEMENT REJECTED.

Explanation: The DPLINEC process statement is a
continuation of the preceding DPLINE (or DPLINEC)
statement and therefore must always be preceded by
one of those statements.

System action: The SuperC run continues.

Programmer response: Ensure the first “Do not
process” statement is a DPLINE followed, if necessary,
by a DPLINEC statement containing “continuation”
information.

See “Process statements” on page 227.

ASMF038W SRCHFORC MUST BE PRECEDED BY
A VALID SRCHFOR /SRCHFORC
STATEMENT. STATEMENT REJECTED.

Explanation: The SRCHFORC process statement is a
continuation of the preceding SRCHFOR (or
SRCHFORC) statement and therefore must always be
preceded by one of those statements.

System action: The SuperC run continues.

Programmer response: Ensure the first “search”
statement is a SRCHFOR followed, if necessary, by a
SRCHFORC statement containing “continuation”
information.

See “Process statements” on page 227.

ASMF039W ONLY ONE GROUP OF FILES OR
MEMBERS MAY BE PROCESSED
USING SELECTF STATEMENTS.
STATEMENT REJECTED.

Explanation: SelectF does not allow multiple wildcard
selection (except when used for file mode).

System action: The SuperC run continues.

Programmer response: Correct process statement.

See “Process statements” on page 227.

ASMF032W • ASMF039W

Chapter 6. Using Enhanced SuperC 303

ASMF040W SOME LINES OVERFLOW WITH
CHANGE TEXT SUBSTITUTION.
RESULTS MAY BE AFFECTED.

Explanation: Change text (NCHGT/OCHGT process
statement) has a different length than search text. The
result could run past the end of the record.

System action: The SuperC run continues.

Programmer response: See “Process statements” on
page 227.

ASMF041W UPDLDEL OPTION INVALID DUE TO
INCONSISTENT LRECL OR RECFM
ATTRIBUTES.

Explanation: If input is fixed, then both files must be
the same record length. The UPDLDEL option is
ignored.

System action: The SuperC run continues (without
UPDLDEL process option).

Programmer response: See “Process options” on page
216.

ASMF042W NCHGT AND OCHGT MIXED DBCS
PATTERNS MUST BE THE SAME
LENGTH. STATEMENT REJECTED.

Explanation: The lengths of the search text and
change text must be equal length in DBCS.

System action: The SuperC run continues.

Programmer response: Correct NCHGT or OCHGT
process statement.

ASMF043W CMPCOLM NOT VALID FOR MIXED
DATA AND SRCHCMP OR
WORDCMP OPERATIONS.
STATEMENT REJECTED.

Explanation: CMPCOLM process statement cannot be
used with search or WORD compare type when the
input contains a mixture of DBCS and non-DBCS data.

System action: The SuperC run continues.

Programmer response: Correct process statement or
change to a line compare.

ASMF044W MIXING CMPLINE, CMPSECT, AND
CMPBOFS STMTS IS NOT ALLOWED.
STATEMENT REJECTED.

Explanation: Invalid combination of process
statements.

System action: The SuperC run continues.

Programmer response: Use only one of these type of
process statements at a time.

ASMF045W statement-type STATEMENT(S) ONLY
ALLOWED WITH SINGLE MEMBERS
OR SEQUENTIAL FILES/DATA SETS.
STATEMENT REJECTED.

Explanation: An NTITLE, OTITLE, or CMPSECT
process statement has been used for a “group” of files
or members. These statements are only valid for single
members or files.

System action: The SuperC run continues.

Programmer response: Specify a single member/file.

ASMF046W VSE NEWDD/OLDDD PARAMETER IS
INVALID.

Explanation: One of the NEWDD/OLDDD parameters
is invalid.

System action: The SuperC run continues.

Programmer response: Check format of
NEWDD/OLDDD statement.

See “Process statements” on page 227.

ASMF047W VSE PARAMETER NAME LONGER
THAN 8 CHARACTERS.

Explanation: One of the parameters on a
NEWDD/OLDDD statement is too long.

System action: The SuperC run continues.

Programmer response: Correct NEWDD or OLDDD
process statement.

See “Process statements” on page 227.

ASMF048W VSE RECFORM VALUE MORE THAN
2 CHARACTERS.

Explanation: RECFORM in a NEWDD or OLDDD
process statement can only be FU, FB, VU, or VB.

System action: The SuperC run continues.

Programmer response: Correct NEWDD or OLDDD
process statement.

See “Process statements” on page 227.

ASMF049W VSE: MIXED MATCHING OF
LIBRARIAN FILES AND SAM FILES
NOT ALLOWED. NEWDD/OLDDD
SET TO DEFAULT.

Explanation: Input files must be the same type. The
statement which defined the Librarian is ignored and
default attributes are assigned to the file concerned.
Default file attributes used: fixed, unblocked, record
and blocksize of 80.

System action: The SuperC run continues.

ASMF040W • ASMF049W

304 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Programmer response: See “Process statements” on
page 227.

ASMF050W AGING ONLY ALLOWED ON ONE
FILE. WILL ASSUME ONLY OLDDD IS
TO BE AGED.

Explanation: NY2AGE and OY2AGE process
statements are mutually exclusive. NY2AGE statement
ignored.

System action: The SuperC run continues.

Programmer response: Check which file you want to
“age” and use either the NY2AGE or OY2AGE
accordingly.

See “Process statements” on page 227.

ASMF051W CONFLICTING FOCUS/EXCLUDE
STATEMENTS DEFINED.

Explanation: NEXCLUDE/OEXCLUDE process
statements are mutually exclusive to
NFOCUS/OFOCUS if using the same operand
keyword (ROWS or COLS).

System action: The SuperC run continues.

Programmer response: Check that the
NEXCLUDE/OEXCLUDE and NFOCUS/OFOCUS
process statements “exclude” and “focus” on the data
you want without conflicting with each other.

See “Process statements” on page 227.

ASMF052W WRONG DATE FORMAT IN NEW FILE

Explanation: Date definition format in
NY2C/NY2Z/NY2D/NY2P statement is invalid. Date
is ignored.

System action: The SuperC run continues.

Programmer response: Correct process statement.

See “Process statements” on page 227.

ASMF053W WRONG DATE FORMAT IN OLD FILE

Explanation: Date definition format in
OY2C/OY2Z/OY2D/OY2P statement is invalid. Date is
ignored.

System action: The SuperC run continues.

Programmer response: Correct process statement.

See “Process statements” on page 227.

ASMF054E "NEW" FILE/DATA SET
NAME/MEMBER IS INVALID OR AN
ERROR WAS ENCOUNTERED
DURING OPEN. OPERATION
TERMINATED.

Explanation: “New” input file could not be found or a
problem was encountered during the open process.

System action: The SuperC run terminates.

Programmer response: Check that the “new” file
name has been specified correctly

ASMF055E "OLD" FILE/DATA SET
NAME/MEMBER IS INVALID OR AN
ERROR WAS ENCOUNTERED
DURING OPEN. OPERATION
TERMINATED.

Explanation: “Old” input file could not be found or a
problem was encountered during the open process.

System action: The SuperC run terminates.

Programmer response: Check that the “old” file name
has been specified correctly

ASMF056E "SRH" FILE/DATA SET
NAME/MEMBER IS INVALID OR AN
ERROR WAS ENCOUNTERED
DURING OPEN. OPERATION
TERMINATED.

Explanation: New file could not be opened

System action: The SuperC run terminates.

Programmer response: Check that the dataset/file has
been assigned correctly.

ASMF057E THE INPUT FILES/DATA SETS COULD
NOT BE PROCESSED. BOTH MUST
BE SEQUENTIAL OR A WHOLE
PDS/MACLIB.

Explanation: Cannot compare a PDS/MACLIB/
TXTLIB/Librarian with a sequential file/dataset.

System action: The SuperC run terminates.

Programmer response: Ensure input files are
comparable.

ASMF058E MEMORY AVAILABLE WAS
INSUFFICIENT. OPERATION
TERMINATED.

Explanation: There was insufficient memory available
for SuperC to run.

System action: The SuperC run terminates.

Programmer response: Increase amount of memory
available.

ASMF050W • ASMF058E

Chapter 6. Using Enhanced SuperC 305

ASMF059E A SYNAD ERROR INTERCEPT ON
THE NEW-FILE/DATA SET IS AN I/O
ERROR, CONCATENATION
ORDERING OR ATTRIBUTE
CONFLICT.

Explanation: New file/dataset I/O error.

System action: The SuperC run terminates.

Programmer response: Refer to your systems
programmer.

ASMF060E A SYNAD ERROR INTERCEPT ON
THE OLD-FILE/DATA SET IS AN I/O
ERROR, CONCATENATION
ORDERING OR ATTRIBUTE
CONFLICT.

Explanation: Old file/dataset I/O error.

System action: The SuperC run terminates.

Programmer response: Refer to your systems
programmer.

ASMF061E A SYNAD ERROR INTERCEPT ON
THE UPD-FILE/DATA SET WAS
DETECTED. THE OUTPUT MAY BE
INCOMPLETE.

Explanation: Update file/dataset I/O error.

System action: The SuperC run terminates.

Programmer response: Refer to your systems
programmer.

ASMF062E UPDATE FILE/DATA SET, DELDD,
MISSING OR INCOMPATIBLE
ATTRIBUTES/LRECL FOR
PDS/MACLIB. UPDATE OPTIONS
CANCELLED.

Explanation: Update/delta file requested but there is
no assignment for it.

System action: The SuperC run terminates.

Programmer response: Refer to your systems
programmer.

ASMF063E member_name - SYNAD ERROR
INTERCEPT OCCURRED
PROCESSING NAMED MEMBER.

Explanation: I/O error on processing member.

System action: The SuperC run terminates.

Programmer response: Refer to your systems
programmer.

ASMF064E data-set-name COULD NOT BE OPENED

Explanation: Problem encountered when trying to
open data set.

System action: The SuperC run terminates.

Programmer response: Correct either the data-set-name
process statement or the dataset-name JCL statement.

ASMF065E LABEL INFORMATION NOT
AVAILABLE FOR data-set-name.

Explanation: Label details for data set missing.

System action: The SuperC run terminates.

Programmer response: Correct either the data-set-name
process statement or the data-set-name JCL statement.

ASMF067E data-set-name SHOWCAT FAILURE.

Explanation: Error in accessing VSAM catalogue.

System action: The SuperC run terminates.

Programmer response: Make sure the data-set-name is
assigned correctly.

ASMF068E data-set-name DEVICE TYPE NOT
SUPPORTED.

Explanation: data-set-name is supported for disk and
tape only.

System action: The SuperC run terminates.

Programmer response: Correct the data-set-name to
ensure it is assigned to disk or tape.

ASMF069W LIBRARY MEMBER IN data-set-name
NOT FOUND.

Explanation: Member could not be found in library.

System action: The SuperC run continues (without
this member).

Programmer response: Inspect output listing for
further details.

ASMF070W REQUEST FOR WIDE OPTION NOT
SUPPORTED BY SYSLST. NARROW
OPTION WILL BE SUBSTITUTED.

Explanation: The WIDE process option requires a
printing device capable of printing lines up to 202
characters long. The 55-character side-by-side
NARROW option has been used instead.

System action: The SuperC run continues.

Programmer response: Refer to your systems
programmer.

ASMF059E • ASMF070W

306 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

ASMF071W SIDE BY SIDE LISTINGS NOT
ALLOWED WHEN USING COLHEAD
PROCESS STATEMENT.

Explanation: The NARROW process option cannot be
used with the COLHEAD process statement.

System action: The COLHEAD statements are
accepted and the NARROW (side-by-side) process
option is ignored. The SuperC run continues.

Programmer response: Check that you are using the
correct process options and statements.

See “Process options” on page 216 and “Process
statements” on page 227.

ASMF072W UPDATE PROCESS OPTIONS
INCOMPATIBLE WITH Y2DTONLY
PROCESS OPTION.

Explanation: Update process options cannot be used
with the “Compare Dates Only” process option.

System action: The UPD... process option is ignored.
The SuperC run continues.

Programmer response: Check that you are using the
correct process options and statements.

See “Process options” on page 216 and “Process
statements” on page 227.

ASMF073W Y2PAST PROCESS STATEMENT
SPECIFIED WITHOUT ANY DATE
DEFINITION PROCESS STATEMENTS.

Explanation: A Y2PAST process statement has been
used but there are no accompanying Date Definition
process statements.

System action: The Y2PAST process option is ignored.
The SuperC run continues.

Programmer response: Check that you are using the
process statements correctly. Either the Y2PAST process
statement should be removed, or one or more date
definition process statements should be included.

See “Process statements” on page 227.

ASMF074W FOCUS/EXCLUDE PROCESS
STATEMENTS ARE IGNORED WHEN
USING THE Y2DTONLY PROCESS
OPTION.

Explanation: NFOCUS, OFOCUS, NEXCLUDE, and
OEXCLUDE process statements have no effect when
the Y2DTONLY process option is used.

System action: The FOCUS/EXCLUDE process
statements are ignored. The SuperC run continues.

Programmer response: Check that you are using the
correct process options and statements.

See “Process options” on page 216 and “Process
statements” on page 227.

ASMF075I DATE DEFINITION PROCESS
STATEMENTS ARE IGNORED WHEN
USING THE COLHEAD PROCESS
STATEMENT.

Explanation: Date Definition process statements
cannot be used with the COLHEAD process statement.
(The Date Definition statements generate their own
information line for which column headings are not
appropriate.)

System action: The Date Definition process statements
are ignored. The SuperC run continues.

Programmer response: Check that you are using the
correct process statements.

See “Process statements” on page 227.

ASMF076I FOCUS/EXCLUDE OF ROWS USED
FOR ONLY ONE FILE. ALL ROWS
PROCESSED IN THE OTHER FILE.

Explanation: A “focus” (NFOCUS or OFOCUS) or an
“exclude” (NEXCLUDE or OEXCLUDE) process
statement has been specified for one file but not for the
other file.

System action: All rows (records) of the file for which
no “focus” or “exclude” statement exists are included
in the comparison process.

Programmer response: Check that you are using the
“focus” or “exclude” process statements correctly.

See “Process statements” on page 227.

ASMF077E WRONG LENGTH RECORD IN
defined-input-file. RUN ABORTED.

Explanation: The input tape file defined by the
process statement defined-input-file (NEWDD or
OLDDD) contains a record of the wrong length.

System action: The SuperC run terminates.

Programmer response: Check that the record format,
block size, and maximum record size have been
specified correctly on the NEWDD/OLDDD process
statement.

See “Process statements” on page 227.

ASMF079W FMSTOP OPTION ONLY VALID WITH
FILE COMPARE OR SEARCH.

Explanation: The FMSTOP option is set for a compare
that is not a FILE compare.

System action: The FMSTOP option is ignored.

Programmer response: Remove the FMSTOP option,
or change the compare to a FILE compare.

ASMF071W • ASMF079W

Chapter 6. Using Enhanced SuperC 307

ASMF079W

308 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie New York 12601-5400
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

© Copyright IBM Corp. 1992, 2013 309

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at http://www.ibm.com/legal/copytrade.shtml.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

310 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

http://www.ibm.com/legal/copytrade.shtml

Bibliography

High Level Assembler Documents
HLASM General Information, GC26-4943
HLASM Installation and Customization Guide, SC26-3494
HLASM Language Reference, SC26-4940
HLASM Programmer's Guide, SC26-4941

Toolkit Feature document
HLASM Toolkit Feature User's Guide, GC26-8710
HLASM Toolkit Feature Debug Reference Summary, GC26-8712
HLASM Toolkit Feature Interactive Debug Facility User's Guide, GC26-8709
HLASM Toolkit Feature Installation and Customization Guide, GC26-8711

Related documents (Architecture)
z/Architecture Principles of Operation, SA22-7832

Related documents for z/OS
z/OS:
z/OS MVS JCL Reference, SA23-1385
z/OS MVS JCL User's Guide, SA23-1386
z/OS MVS Programming: Assembler Services Guide, SA23-1368
z/OS MVS Programming: Assembler Services Reference, Volume 1 (ABE-HSP), SA23-1369
z/OS MVS Programming: Assembler Services Reference, Volume 2 (IAR-XCT), SA23-1370
z/OS MVS Programming: Authorized Assembler Services Guide, SA23-1371
z/OS MVS Programming: Authorized Assembler Services Reference, Volumes 1 - 4, SA23-1372 - SA23-1375
z/OS MVS Program Management: User's Guide and Reference, SA23-1393
z/OS MVS System Codes, SA38-0665
z/OS MVS System Commands, SA38-0666
z/OS MVS System Messages, Volumes 1 - 10, SA38-0668 - SA38-0677
z/OS Communications Server: SNA Programming, SC27-3674
UNIX System Services:
z/OS UNIX System Services User's Guide, SA23-2279
DFSMS/MVS:
z/OS DFSMS Program Management, SC27-1130
z/OS DFSMSdfp Utilities, SC23-6864
TSO/E (z/OS):
z/OS TSO/E Command Reference, SA32-0975
SMP/E (z/OS):
SMP/E for z/OS Messages, Codes, and Diagnosis, GA32-0883
SMP/E for z/OS Reference, SA23-2276
SMP/E for z/OS User's Guide, SA23-2277

© Copyright IBM Corp. 1992, 2013 311

http://publibz.boulder.ibm.com/cgi-bin/bookmgr/download/DZ9ZR008.pdf
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC27-3674-00
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2m200/CCONTENTS

Related documents for z/VM
z/VM: VMSES/E Introduction and Reference, GC24-6243
z/VM: Service Guide, GC24-6247
z/VM: CMS Commands and Utilities Reference, SC24-6166
z/VM: CMS File Pool Planning, Administration, and Operation, SC24-6167
z/VM: CP Planning and Administration, SC24-6178
z/VM: Saved Segments Planning and Administration, SC24-6229
z/VM: Other Components Messages and Codes, GC24-6207
z/VM: CMS and REXX/VM Messages and Codes, GC24-6161
z/VM: CP System Messages and Codes, GC24-6177
z/VM: CMS Application Development Guide, SC24-6162
z/VM: CMS Application Development Guide for Assembler, SC24-6163
z/VM: CMS User's Guide, SC24-6173
z/VM: XEDIT User's Guide, SC24-6245
z/VM: XEDIT Commands and Macros Reference, SC24-6244
z/VM: CP Commands and Utilities Reference, SC24-6175

Related documents for z/VSE
z/VSE: Guide to System Functions, SC33-8312
z/VSE: Administration, SC34-2627
z/VSE: Installation, SC34-2631
z/VSE: Planning, SC34-2635
z/VSE: System Control Statements, SC34-2637
z/VSE: Messages and Codes, Vol.1 , SC34-2632
z/VSE: Messages and Codes, Vol.2, SC34-2633
z/VSE: Messages and Codes, Vol.3, SC34-2634
REXX/VSE Reference, SC33-6642
REXX/VSE User's Guide, SC33-6641

312 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

http://publibz.boulder.ibm.com/epubs/pdf/hcsc6c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsf1c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsd8c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsi3c10.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsg0c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsg4c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsb6c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsb5c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsb4c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsd0c10.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsd2c10.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsd7c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsd9c00.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcse0c00.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcse4c20.pdf
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iessye40/CCONTENTS
ftp://public.dhe.ibm.com/eserver/zseries/zos/vse/pdf3/zvse51/iesame71.pdf
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IESIST70/CCONTENTS?SHELF=IESVSE91&DN=SC34-2631-00
ftp://public.dhe.ibm.com/eserver/zseries/zos/vse/pdf3/zvse51/iesple72.pdf
ftp://public.dhe.ibm.com/eserver/zseries/zos/vse/pdf3/zvse51/iessoe71.pdf
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IESMC171/CCONTENTS?SHELF=IESVSE91&DN=SC34-2632-01
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IESMC271/CCONTENTS?SHELF=IESVSE91&DN=SC34-2633-01
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IESMC371/CCONTENTS?SHELF=IESVSE91&DN=SC34-2634-01
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iesrre31/CCONTENTS
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iesrue02/CCONTENTS

Glossary

This glossary defines terms and abbreviations that
are used in this book. If you do not find the term
you are looking for refer to the index, to the
glossary of the appropriate high-level language
(HLL) manual, or to the IBM Dictionary of
Computing, New York: McGraw-Hill, 1994.

A

abend Abnormal end of application.

accept An SMP/E process that moves distributed
code and programs to the distribution
libraries.

activate
To make a program available for use.

addressing mode (AMODE)
An attribute that refers to the address
length that a routine is prepared to
handle upon entry. Addresses may be 24
or 31 bits long.

address space
Domain of addresses that are accessible
by an application.

AMODE
Addressing mode.

APAR Authorized program analysis report.

authorized program analysis report (APAR)
A request for correction of a problem
caused by a defect in a current unaltered
release of a program.

authorized program facility (APF)
The authorized program facility (APF) is
a facility that an installation manager uses
to protect the system. In z/OS, certain
system functions, such as all or part of
some SVCs, are sensitive; their use must
be restricted to users who are authorized.
An authorized program is one that
executes in supervisor state, or with APF
authorization.

auxiliary file
In CMS, a file that contains a list of file
types of update files to be applied to a
particular source file.

B

base The core product, upon which features
may be separately ordered and installed.

batch Pertaining to activity involving little or no
user action. Contrast with interactive.

byte The basic unit of storage addressability,
normally with a length of 8 bits.

C

cataloged procedure
A set of control statements placed in a
library and retrievable by name.

CBIPO
Custom-Built Installation Process
Offering.

CBPDO
Custom-Built Product Delivery Offering.

CE IBM customer engineer.

CLIST TSO command list.

CMS Conversational monitor system.

compiler options
Keywords that can be specified to control
certain aspects of compilation. Compiler
options can control the nature of the load
module generated by the compiler, the
types of printed output to be produced,
the efficient use of the compiler, and the
destination of error messages.

component
Software that is part of a functional unit.

A set of modules that performs a major
function within a system.

condition code
A code that reflects the result of a
previous input/output, arithmetic, or
logical operation.

control block
A storage area used by a computer
program to hold control information.

control file
In CMS, a file that contains records that
identify the updates to be applied and the
macrolibraries, if any, needed to assemble
a particular source program.

control program (CP)
A computer program designed to
schedule and to supervise the execution
of programs of a computer system.

© Copyright IBM Corp. 1992, 2013 313

control section (CSECT)
The part of a program specified by the
programmer to be a relocatable unit, all
elements of which are to be loaded into
adjoining main storage locations.

control statement
In programming languages, a statement
that alters the continuous sequential
execution of statements; a control
statement can be a conditional statement,
such as IF, or an imperative statement,
such as STOP.

In JCL, a statement in a job that identifies
the job or describes its requirements to
the operating system.

conversational monitor system (CMS)
A virtual machine operating system that
provides general interactive time sharing,
problem solving, and program
development capabilities, and operates
only under the control of the z/VM
control program.

corrective maintenance
Maintenance performed specifically to
overcome existing problems.

CP command
In z/VM, a command by which a
terminal user controls his or her virtual
machine. The z/VM control program
commands are called CP commands.

CPPL Command processor parameter list.

CP privilege class
In z/VM, one or more classes assigned to
a virtual machine user in the user's z/VM
directory entry; each privilege class allows
access to a logical subset of the CP
commands.

CSI Consolidated software inventory data
set.See SMPCSI.

CSECT
Control section.

cumulative service tape
A tape sent with a new function order,
containing all current PTFs for that
function.

Custom-Built Installation Process Offering
(CBIPO)

A CBIPO is a tape that has been specially
prepared with the products (at the
appropriate release levels) requested by

the customer. A CBIPO simplifies
installing various products together.

Custom-Built Product Delivery Offering
(CBPDO)

A CBPDO is a tape that has been specially
prepared for installing a particular
product and the related service requested
by the customer. A CBPDO simplifies
installing a product and the service for it.

D

data definition name (DDNAME)
The logical name of a file within an
application. The DDNAME provides the
means for the logical file to be connected
to the physical file.

data set
Under z/OS, a named collection of
related data records that is stored and
retrieved by an assigned name.
Equivalent to a CMS file.

data set name (dsname)
The data set name on the DD statement
in the JCL or the dsname operand of the
TSO ALLOC command.

DBCS Double-byte character set.

DDDEF
Dynamic data definition.

DDNAME
Data definition name.

default
A value that is used when no alternative
is specified.

DD statement
In z/OS, connects the logical name of a
file and the physical name of the file.

DELTA disk
In z/VM, the virtual disk that contains
program temporary fixes (PTFs) that have
been installed but not merged.

disassembler
A program that accepts object code as
input, and produces assembler language
source statements and a pseudo-listing as
output.

disassembly
The process of converting object code into
assembler language source statements and
a pseudo-listing.

314 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

distribution libraries
IBM-supplied partitioned data sets on
tape containing one or more components
that the user restores to disk for
subsequent inclusion in a new system.

distribution medium
The medium on which software is
distributed to the user; for example,
9-track magnetic tape, tape cartridge.

distribution zone
In SMP/E, a group of VSAM records that
describe the SYSMODs and elements in
the distribution libraries.

DLBL z/VSE only. Disk Label information; JCL
statement.

double-byte character set (DBCS)
A collection of characters represented by a
2-byte code.

driving system
The system used to install the program.
Contrast with target system.

dsname
Data set name.

dynamic data definition (DDDEF)
The process of defining a data set and
allocating auxiliary storage space for it
while, rather than before, a job step
executes.

dynamic storage
Storage acquired as needed at run time.
Contrast with static storage.

E

ECMODE
Extended control mode.

executable program
A program that has been link-edited and
therefore can run in a processor.

The set of machine language instructions
that constitute the output of the
compilation of a source program.

Extended control mode (ECMODE)
A mode in which all features of a
System/370 computing system, including
dynamic address translation, are
operational.

Extended Service Option (ESO)
A service option that gives a customer all
the new fixes for problems in IBM

licensed programs that operate under that
customer's operating system.

F

feature
A part of an IBM product that may be
ordered separately by a customer.

feature number
A four-digit code used by IBM to process
hardware and software orders.

file A named collection of related data records
that is stored and retrieved by an
assigned name. Equivalent to a z/OS data
set.

FILEDEF
File definition statement.

file definition statement (FILEDEF)
In CMS, connects the logical name of a
file and the physical name of a file.

fix A correction of an error in a program,
normally a temporary correction or
bypass of defective code.

FMID Function modification identifier.

function
A routine that is invoked by coding its
name in an expression. The routine passes
a result back to the invoker through the
routine name.

function modification identifier (FMID)
The value used to distinguish separate
parts of a product. A product tape or
cartridge has at least one FMID.

H

HLASM
The High Level Assembler.

I

IBM customer engineer (CE)
An IBM service representative who
performs maintenance services for IBM
hardware.

IBM program support representative (PSR)
An IBM service representative who
performs maintenance services for IBM
software at a centralized IBM location.

IBM service representative
An individual in IBM who performs
maintenance services for IBM products or
systems.

Glossary 315

IBM Software Distribution (ISD)
The IBM department responsible for
software distribution.

IBM Support Center
The IBM department responsible for
software service.

IBM systems engineer (SE)
An IBM service representative who
performs maintenance services for IBM
software in the field.

initial program load (IPL)
The initialization procedure that causes an
operating system to commence operation.

The process by which a configuration
image is loaded into storage, as at the
beginning of a work day or after a system
malfunction or as a means to access
updated parts of the system.

The process of loading system programs
and preparing a system to run jobs.

inline Sequential execution of instructions,
without branching to routines,
subroutines, or other programs.

IPL Initial program load.

interactive
Pertaining to a program or system that
alternately accepts input and responds. In
an interactive system, a constant dialog
exists between user and system. Contrast
with batch.

ISD IBM Software Distribution.

J

JCL Job control language.

JCLIN data
The JCL statements associated with the
++JCLIN statement or saved in the
SMPJCLIN data set. They are used by
SMP/E to update the target zone when
the SYSMOD is applied. Optionally,
SMP/E can use the JCLIN data to update
the distribution zone when the SYSMOD
is accepted.

JES Job Entry Subsystem

Job Entry Subsystem
A system facility for spooling, job
queueing, and managing the scheduler
work area.

job control language (JCL)
A sequence of commands used to identify
a job to an operating system and to
describe a job’s requirements.

job step
You enter a program into the operating
system as a job step. A job step consists of
the job control statements that request
and control execution of a program and
request the resources needed to run the
program. A job step is identified by an
EXEC statement. The job step can also
contain data needed by the program. The
operating system distinguishes job control
statements from data by the contents of
the record.

L

library
A collection of functions, subroutines, or
other data.

link pack area (LPA)
In z/OS, an area of main storage
containing reenterable routines from
system libraries. Their presence in main
storage saves loading time when a
reenterable routine is needed.

linkage editor
A program that resolves cross-references
between separately assembled object
modules and then assigns final addresses
to create a single relocatable load module.
The linkage editor then stores the load
module in a program library in main
storage.

link-edit
To create a loadable computer program by
means of a linkage editor.

load module
An application or routine in a form
suitable for execution. The application or
routine has been compiled and
link-edited; that is, address constants have
been resolved.

logical saved segment
A portion of a physical saved segment
that CMS can manipulate. Each logical
saved segment can contain different types
of program objects, such as modules, text
files, execs, callable services libraries,
language repositories, user-defined
objects, or a single minidisk directory. A
system segment identification file

316 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

(SYSTEM SEGID) associates a logical
saved segment to the physical saved
segment in which it resides. See physical
saved segment and saved segment.

LPA Link pack area.

M

MCS Modification control statement

minidisk
In z/VM, all, or a logical subdivision of, a
physical disk storage device that has its
own address, consecutive storage space
for data, and an index or description of
stored data so that the data can be
accessed. Synonymous with virtual disk.

module
A language construct that consists of
procedures or data declarations and can
interact with other such constructs.

MSHP
Maintain system history program.

MVS Multiple Virtual Storage operating system.

multicultural support
Translation requirements affecting parts of
licensed programs; for example,
translation of message text and
conversion of symbols specific to
countries.

N

Named Saved System
A copy of an operating system that a user
has named and saved in a file. The user
can load the operating system by its
name, which is more efficient than
loading it by device number.

nonexecutable components
Components of a product that cannot be
run.

non reentrant
A program that cannot be shared by
multiple users.

nonreenterable
See non reentrant.

NSS named saved system

O

object code
Output from a compiler or assembler
which is itself executable machine code or

is suitable for processing to produce
executable machine code.

object deck
Synonymous with object module, text deck.

object module
A portion of an object program suitable as
input to a linkage editor. Synonymous
with text deck, object deck.

online Pertaining to a user's ability to interact
with a computer.

Pertaining to a user's access to a
computer via a terminal.

operating system
Software that controls the running of
programs; in addition, an operating
system may provide services such as
resource allocation, scheduling,
input/output control, and data
management.

P

parameter
Data items that are received by a routine.

phase z/VSE only. A link edited program.

partition
A fixed-size division of storage.

physical saved segment
One or more pages of storage that have
been named and retained on a CP-owned
volume (DASD). When created, it can be
loaded within a virtual machine's address
space or outside a virtual machine's
address space. Multiple users can load the
same copy. A physical saved segment can
contain one or more logical saved
segments. A system segment identification
file (SYSTEM SEGID) associates a physical
saved segment to its logical saved
segments. See logical saved segment and
saved segment.

preventive maintenance
Maintenance performed specifically to
prevent problems from occurring.

preventive service planning (PSP)
The online repository of program
temporary fixes (PTFs) and other service
information. This information could affect
installation.

Glossary 317

procedure
A named block of code that can be
invoked, normally using a call.

procedure library (PROCLIB)
A program library in direct-access storage
with job definitions. The
reader/interpreter can be directed to read
and interpret a particular job definition by
an execute statement in the input stream.

PROCLIB
Procedure library.

program level
The modification, release, version, and fix
level of a product.

program number
The seven-digit code (in the format
xxxx-xxx) used by IBM to identify each
program product.

program temporary fix (PTF)
A temporary solution or bypass of a
problem diagnosed by IBM as resulting
from a defect in a current unaltered
release of the program.

PSP Preventive service planning.

PSR IBM program support representative.

PTF Program temporary fix.

Q

qualifier
A modifier that makes a name unique.

R

reentrant
The attribute of a routine or application
that allows more than one user to share a
single copy of a load module.

reenterable
See reentrant

relative file tape (RELFILE tape)
A standard label tape made up of two or
more files. It contains a file of the MCSs
for one or more function SYSMODs and
one or more relative files containing
unloaded source data sets and unloaded,
link-edited object data sets at the
distribution library level. A relative file
tape is one way of packaging SYSMODs,
and is typically used for function
SYSMODs.

relative files (RELFILEs)
Files containing modification text and JCL
input data associated with a SYSMOD.

RELFILEs
Relative files

RELFILE tape
Relative file tape

relocatable load module
Under CMS, a combination of object
modules having cross references resolved
and prepared for loading into storage for
execution.

residence mode (RMODE)
The attribute of a load module that
specifies whether the module, when
loaded, must reside below the 16MB
virtual storage line or may reside
anywhere in virtual storage.

resident modules
A module that remains in a particular
area of storage.

return code
A code produced by a routine to indicate
its success. It can be used to influence the
execution of succeeding instructions.

RIM Related installation materials

RMODE
Residence mode.

run To cause a program, utility, or other
machine function to be performed.

S

save area
Area of main storage in which contents of
registers are saved.

SBCS Single-byte character set.

service level
The modification level, release, version,
and fix level of a program. The service
level incorporates PTFs if there are any.

saved segment
A segment of storage that has been saved
and assigned a name. Saved segments can
be physical saved segments that CP
recognizes or logical saved segments that
CMS recognizes. The segments can be
loaded and shared among virtual
machines, which helps use real storage
more efficiently, or a private, nonshared
copy can be loaded into a virtual

318 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

machine. See logical saved segment and
physical saved segment.

shared segment
In z/VM, a feature of a saved system that
allows one or more segments of
reenterable code in real storage to be
shared among many virtual machines.

shared storage
An area of storage that is the same for
each virtual address space. Because it is
the same space for all users, information
stored there can be shared and does not
have to be loaded in the user region.

severity code
A part of run-time messages that indicates
the severity of the error condition (1, 2, 3,
or 4).

single-byte character set (SBCS)
A collection of characters represented by a
1-byte code.

SMPCSI
The SMP/E data set that contains
information about the structure of a user's
system as well as information needed to
install the operating system on a user's
system. The SMPCSI DD statement refers
specifically to the CSI that contains the
global zone. This is also called the master
CSI.

softcopy
One or more files that can be
electronically distributed, manipulated,
and printed by a user.

software inventory disk
In z/VM, the disk where the system level
inventory files reside.

source code
The input to a compiler or assembler,
written in a source language.

source program
A set of instructions written in a
programming language that must be
translated to machine language before the
program can be run.

SREL System release identifier

statement
In programming languages, a language
construct that represents a step in a
sequence of actions or a set of
declarations.

SUBSET
The value that specifies the function
modifier (FMID) for a product level. It
further specifies an entry in RETAIN* for
a product level.

subsystem
A secondary or subordinate system, or
programming support, normally capable
of operating independently of or
asynchronously with a controlling system.
Examples are CICS® and IMS™.

SVA Shared virtual area.

syntax The rules governing the structure of a
programming language and the
construction of a statement in a
programming language.

SYSMOD
system modification.

SYSMOD ID
system modification identifier.

system abend
An abend caused by the operating
system’s inability to process a routine; can
be caused by errors in the logic of the
source routine.

T

target disk
In z/VM, the disk to which a program is
installed.

target libraries
In SMP/E, a collection of data sets in
which the various parts of an operating
system are stored. These data sets are
sometimes called system libraries.

target zone
In SMP/E, a collection of VSAM records
describing the target system macros,
modules, assemblies, load modules,
source modules, and libraries copied from
DLIBs during system generation, and the
system modifications (SYSMODs) applied
to the target system.

text deck
Synonym for object module, object deck.

time sharing option/extended (TSO/E)
An option on the operating system; for
System/370, the option provides
interactive time sharing from remote
terminals.

Glossary 319

TSO/E Time sharing option/extended.

U

UCLIN
In SMP/E, the command used to initiate
changes to SMP/E data sets. Actual
changes are made by subsequent UCL
statements.

UPGRADE
An alphanumeric identifier that specifies
a product level.

user exit
A routine that takes control at a specific
point in an application.

USERMOD
User modification.

user modification (USERMOD)
A change to product code that the
customer initiates.

V

virtual machine (VM)
A functional simulation of a computer
and its associated devices. Each virtual
machine is controlled by a suitable
operating system.

In z/VM, a functional equivalent of either
a System/370 computing system or a
System/370-Extended Architecture
computing system.

VMFINS
An installation aid supplied as part of
VMSES/E to make installation on z/VM
consistent.

VM Serviceability Enhancements
Staged/Extended (VMSES/E)

A program product for installing and
maintaining products on VM.

VMSES/E
VM Serviceability Enhancements
Staged/Extended.

VOLSER
Volume serial number.

volume
A certain portion of data, together with its
data carrier, that can be handled
conveniently as a unit.

A data carrier mounted and demounted
as a unit; for example, a reel of magnetic
tape, a disk pack.

volume label
An area on a standard label tape used to
identify the tape volume and its owner.
This area is the first 80 bytes and contains
VOL 1 in the first four positions.

volume serial number (VOLSER)
A number in a volume label assigned
when a volume is prepared for use in a
system.

VSAM
Virtual storage access method. A
high-performance mass storage access
method. Three types of data organization
are available: entry sequenced data sets
(ESDS), key sequenced data sets (KSDS),
and relative record data sets (RRDS).

W

word A space-delimited character string.

320 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

Index

Special characters
.* SuperC process statement 230
* 94
* SuperC process statement 230
*-wildcard 180
** 94
%-wildcard 180
> 94
< 94

A
ADATA assembly option 58
ADATA file names

listed 61
ADATA files

closing 70
creating 58
downloading 58
listed 87
opening 61
removing 70
sample 60
working with 61

adding context 77
analyzing 57

assembler language programs 57
arcs

appearance 94
colors 94
double-clicking 84
return 79

area box
scrolling 84
zooming 82

ASIS field (SuperC primary search menu) 200
ASMLEAVE macro 11, 19, 23
ASMMREL macro 12
ASMPUT

closing 92
introduction to 57
slide show demo 60

ASMPUT analysis messages
hiding 66
purpose 66
showing 66

ASMPUT Control Flow Graph window
closing 62
described 94
icons 96
opening 62
options 96

ASMPUT file list area
contents 61
position 87

ASMPUT icons
Collapse 71
Collapse to Context 77
Control Flow Graph window 96
Expand 71

ASMPUT icons (continued)
Help 92
Main window 92
Open file 61
Redo 78
Refresh 78
Show Context 77
Show Graph 62
Show Notebook 88
Show Overview 81
Show Return Arcs 79
Show Zoom Slider 82
Zoom In 82
Zoom In Rectangle 82
Zoom Out 82
Zoom Out Rectangle 82

ASMPUT Main window
described 87
file list area 87
file list area contents 61
function 61
icons 92
information notebook 88
opening ADATA files 61
options 92
source code area 87
viewing source code 62

ASMPUT messages 102
ASMPUT online help 60, 101
ASMPUT options

Center On 84
Collapse All Layers 71
Collapse in Context 71
Collapse Layer 71
Collapse to Context 77
Control Flow Graph window 96
Expand in Context 71
Expand to Window 71
Find 66
Find Next 66
Find Next Diagnostic/Message 66
Help Topics 92
Main window 92
Mark 80
Open 61
Redo Layout 78
Refresh 78
Remove 70
Remove All 70
Remove Context 77
Scroll to Source 84
Scroll to Target 84
Show Analysis Messages 66
Show Assembly Diagnostics 65
Show Context 77
Show Expanded Lines 63
Show Graph 62
Show Info Notebook 88
Show Overview 81
Show Return Arcs 79
Show Zoom Slider 82

© Copyright IBM Corp. 1992, 2013 321

ASMPUT options (continued)
Unmark 80
Unmark All 80
Zoom In 82
Zoom In On 82
Zoom In Rectangle 82
Zoom Out 82
Zoom Out From 82
Zoom Out Rectangle 82

ASMPUT shortcut keys
described 94
finding 66
finding next 66

ASMPUT tabs
HLASM files 89
Job Id 88
Libraries 92
Options 90
Statistics 90

ASMPUT What's This help 102
ASMPUT windows

Control Flow Graph 94
described 87
Main 87
Main file list area 87
Main information notebook 88
Main source code area 87
Overview 100

ASMXREF
ASMXREF EXEC statement, z/VSE 126
ASMXREP EXEC statement, z/VSE 127
CMS 117
CMS EXEC 117
control statements 128
DLBL statement, z/VSE 126
EXEC ASMXREF statement, CMS 122
EXEC ASMXREF statement, z/OS 114
EXEC ASMXRPT statement 115
EXEC ASMXRPT statement, CMS 122
invoking 117
JCL requirements, z/OS 111
JCL requirements, z/VSE 122
messages 158
options 134
SYSIN DD statement 115
understanding reports 137
using 109
z/OS batch 111
z/OS procedures 115
z/OS sample JCL 112
z/VSE 122

ASMXREF control files
CMS 117
z/OS 115
z/VSE 122

ASMXREF control statements
* 128
EXCLUDE 130
INCLUDE 129
LIBRARY 128, 129, 131
PARM 130
REPORT 130

ASMXREF examples
CMS EXEC ASMXREF 122
EXCLUDE control statement 130
INCLUDE control statement 129
LIB parameter to LIBRARY control statement 129

ASMXREF examples (continued)
LIBRARY control statement 129
MASK on token control statement 133
REPORT control statement 131
z/OS JCL 111
z/VSE JCL 123

ASMXREF options 134
DUP 134
MSGLEVEL 134
NODUP 134
PAGELEN 134

ASMXREF token statements 131
EXC 132
INC 131
MASK 132
NODEFLT 133
NOSEP 133

ASMXREP
EXEC 122
EXEC statement 115, 127
JCL requirements 115, 127
JCL requirements, z/OS 111
JCL requirements, z/VSE 127
options 136
understanding CR report 138
understanding LOC report 140
understanding MWU report 147
understanding SOR 148
understanding SWU report 149
understanding TSP 154
understanding TWU report 153
using 109
z/OS sample JCL 112
z/VSE sample JCL 123

ASMXREP options 136
ASMXRPT z/OS procedure 111
ASMXSCAN CMS EXEC 122
ASMXSCAN z/OS procedure 111
assembler instructions 87
assembler language programs

analyzing 57
assembly diagnostics (ASMPUT)

hiding 65
purpose 65
showing 65

assembly options
ADATA 58
GOFF 58
XOBJECT 58

auto display pgm field (SuperC primary search menu) 200

B
backward indexing 25
block comment 142, 143
branch relative on condition instructions 12
branching to the ENDDO 22

C
C family references 138
CAPS field (SuperC primary search menu) 200
CASE macro 11, 30
CASE structured programming macro set 30
CASENTRY macro 11, 30

322 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

CC operand
in structured programming macros 16

Center On option 84
centering 84
change flags 141, 144

multiplication factor 144
rules for counting 145
standard format 144

Change-Flag Descriptor 141, 142
field definition 142
implicit flags 142
process class codes 142
standard format 142

changed source instructions (CSI) 140
changing font properties 62
CHGNV SuperC process statement 229
closing

ADATA files 70
ASMPUT 92
Control Flow Graph window 62
Overview window 81

CMPBOFS SuperC process statement 231
CMPCOLM SuperC process statement 232
CMPCOLMN SuperC process statement 232
CMPCOLMO SuperC process statement 232
CMPLINE SuperC process statement 233
CMPSECT SuperC process statement 234
CMS

ASMXREF CMS EXEC 117
ASMXREF invoking with EXECs 117
ASMXRPT EXEC 122
Disassembler requirements 41

CMS example for Disassembler 42
CMS EXECs

ASMXREF 117
invoking ASMXREF in CMS 117

CMS XRFLANG file 121
COLHEAD SuperC process statement 239
Collapse All Layers option 71
Collapse icon 71
Collapse in Context option 71
Collapse Layer option 71
Collapse to Context icon 77
Collapse to Context option 77
collapsing layers 71
color coding of source code 87
colors

arcs 94
nodes 94

command field
compare type 181

command field (SuperC primary search menu)
command 200

comment Disassembler statement 48
comments 87
comments, full line

definition 141
compare type field 181
component name format 142
condition code mask

in structured macros 12
context

adding 77
collapsing in 71
collapsing to 77
described 77
removing 77

context (continued)
showing 77

control file
ASMXREF for CMS EXEC 117
ASMXREF for z/OS batch 111
ASMXREF for z/VSE batch 126

control file in CMS 118
Control Flow (CF) report 138
control flow graph

described 57
interacting with source code 85
working with 70

control flow graph area
cyan 94
described 94
gray 94
green 94
magenta 94
target 94
yellow 94

control statements 128
Control statements

ASMXREF 127
control statements for Disassembler 45
COPY Disassembler statement 48
COPY segments 87
copyright

observing, on disassembly 39
counting 24
counting comments 141
creating ADATA files 58
Cross-Reference Facility 109
CSECT Disassembler statement 45
cyan node 94

D
DATA only Disassembler statement 46
default ASMXREF options file 120
default token list 134, 135
defaults (Control Flow Graph window)

restoring 63
defaults (Main window)

restoring 63
Disassembler

CMS Example 42
Comment statement 48
control statements 45
COPY statement 48
DATA-only statement 46
Disassembler options 42
disassembling a module for the first time 48
DS-area statement 46
DSECT definition 47
DSECT header statement format 47
INSTR-only statement 46
invoking 39
module-CSECT statement 45
options on CMS 42
options on VSE 44
options on z/OS 41
output description

SYSPRINT - SYSLST 50
SYSPUNCH - SYSPCH 49

PARM field (z/OS) 41
PARM field (z/VSE) 44
ULABL statement 47

Index 323

Disassembler (continued)
USING statement 47
z/OS JCL example 40
z/VSE JCL example 44

Disassembler, using the 39
DO loop terminator generation 21
DO macro 11, 19
DO structured programming macro indexing group 20
DO structured programming macro set 19
documents

High Level Assembler 311
HLASM Toolkit 311
machine instructions 311
z/OS 311
z/VM 311, 312
z/VSE 312

DOEXIT macro 11, 19
double-clicking

an arc 84
downloading ADATA files 58
DPLINE SuperC process statement 241
DPLINEC SuperC process statement 241
DS area Disassembler statement 46
DSECT Disassembler definition 47
DUP option in ASMXREF 134

E
ELSE macro 11, 13
ELSEIF macro 11, 18
ENDCASE macro 11, 30
ENDDO macro 11, 19
ENDIF macro 11, 13
ENDLOOP macro 11, 29
ENDSEL macro 12, 35
ENDSRCH macro 11, 29
EXC keyword for ASMXREF 130, 132
EXEC statement

ASMXREF z/OS EXEC statement 114
ASMXREF z/VSE EXEC statement 126
ASMXREP z/VSE EXEC statement 127
ASMXRPT z/OS EXEC statement 115
sample z/OS JCL 112
sample z/VSE JCL 123
z/OS ASMXRPT EXEC statement 115

EXITIF macro 11, 29
Expand All Layers option 71
Expand icon 71
Expand in Context option 71
Expand Layer option 71
Expand to Window option 71
expanded lines

hiding all 63
hiding for one line 63
showing all 63
showing for one line 63

expanding layers 71
explicit specification 24

F
file information

viewing 67
file transfer to PC 149
File/Member Selection List commands 291

COMMAND 291

File/Member Selection List commands (continued)
left scroll window 291

new Sel column 292
new-file-list 292
new-member-list 292
old-file-name 292
old-member-name 292

right scroll window 292
old Sel field 292
old-file-list 292
old-member-list 292

Find Next Diagnostic/Message option 66
Find Next option 66
Find option 66
finding in ASMPUT

in source code 66
next diagnostic or message 66
shortcut keys for 66

fn ft fm 200
Font properties

changing 62
restoring 63

format notation, description xi
format option 136
FORMAT option in ASMXREP 136
forward indexing 26

G
generic matching rules 133
GOFF assembly option 58
gray node 94
green node 94
grouping flags 142

H
hiding

analysis messages 66
assembly diagnostics 65
expanded lines 63
return arcs 79
zoom slider 82

highlighted source code 87
HLASM Files tab 89

I
IF macro 11, 13
IF structured programming macro option A 14
IF structured programming macro option B 15
IF structured programming macro option C 15
IF structured programming macro option D 16
IF structured programming macro set 13
IF structured programming macros with Boolean

operators 17
implicit flag 143
INC keyword for ASMXREF 131
infinite loop 21
information notebook 88
INSTR only Disassembler statement 46
intellectual property rights 39
introduction to ASMPUT 57
invoking ASMXREF 110

general 110
invoking the Disassembler 39, 40

324 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

invoking the Disassembler (continued)
CMS requirements 41
z/OS requirements (JCL) 40
z/VSE requirements 43

ITBSIZE 130
ITERATE macro 11, 19, 22

J
JCL

(z/OS) Disassembler 40
(z/VSE) Disassembler 43
ASMXREF z/VSE JCL requirements 126
ASMXREP z/VSE JCL requirements 127
ASMXRPT z/OS EXEC statement 115
XRFLANG DLBL statement 126
XRFTOKEN DLBL statement 126
z/OS ASMXREF EXEC statement 114
z/OS ASMXREF invoking 111
z/OS ASMXREF requirements 111
z/OS ASMXREF sample JCL 112
z/OS ASMXREF SYSIN DD statement 115
z/OS ASMXREP requirements 111
z/OS SuperC EXEC statement 177, 199
z/OS SuperC invoking 176, 199
z/OS SuperC requirements 176, 199
z/VSE ASMXREF invoking 122
z/VSE ASMXREF requirements 122
z/VSE ASMXREF sample JCL 123
z/VSE ASMXREP EXEC statement 127
z/VSE ASMXREP requirements 127
z/VSE EXEC ASMXREF statement 126
z/VSE SuperC invoking 193, 213
z/VSE SuperC requirements 193, 213
z/VSE SuperC sample JCL 193, 213

JCL (z/VSE) example for Disassembler 44
Job Id tab 88

K
keyboard shortcuts 94

L
labels 87
language file 134

default token segment 135
language segment 136

layers
collapsing 71
expanding 71

leaving a nested DO 23
Libraries tab 92
LIBRARY control statement in ASMXREF

ASMXREF 109, 128
Library information

viewing 70
license inquiry 309
Lines Of Code (LOC) report 140
lines of OO code (LOOC) report 145
linked node 57
listing file examples

DLMDUP listing 265
group FILE compare 267
LOCS listing 268
NARROW listing 265

listing file examples (continued)
side-by-side listing 265, 266
WIDE listing 266

listing file ID field (SuperC primary search menu) 200
LNCT SuperC process statement 244
LOC per Class section

sample report 147
LOC per Object section

sample report 146
LOGSIZE 130
LOOC

sample report 146
looping in a macro 28
LPSFV SuperC process statement 244
LSTCOLM SuperC process statement 244

M
machine instructions 87

documents 311
macro calls 87
Macro Where Used (MWU) report 147
macros

ASMMREL macro 12
case macro set 30
DO macro set 19
IF macro 13
search macro set 29
select macro set 35

magenta node 94
Mark option 80
marked node 94
marking nodes 80
MASK keyword for ASMXREF 132, 133
matching rules in ASMXREF 133
maximum zoom 82
member field 181
member field (SuperC primary search menu) 200
message level option

ASMXREF in CMS EXEC 117
ASMXREF options 134
z/OS ASMXREF EXEC statement 114
z/VSE ASMXREF EXEC statement 126

message list 158
messages

ASMXREF 158
severity codes 158

messages Disassembler
CMS 50
general 52

minimum zoom 82
module CSECT statement 45
MSGLEVEL option in ASMXREF 134
multiplication factor 144
MWUSIZE 130

N
name prefixes 94
NCHGT SuperC process statement 229
new file ID field 181
NEWDD SuperC process statement 235, 236
NEXCLUDE SuperC process statement 242
next diagnostic or message

finding 66
NFOCUS SuperC process statement 243

Index 325

node colors 94
NODEFLT keyword for ASMXREF 133
nodes in ASMPUT control flow graph

color 94
described 58
double-clicking 71
marked 94
marking 80
name prefixes 94
program entry 71
secondary entry 71
selected 94
selecting 85
source 94
three-dimensional 94
two-dimensional 94
unmarking 80
unresolved 71
yellow 80

NODUP option in ASMXREF 134
NOSEP keyword for ASMXREF 133
notation, description xi
NTITLE SuperC process statement 251
NY2AGE SuperC process statement 252
NY2C SuperC process statement 252
NY2D SuperC process statement 252
NY2P SuperC process statement 252
NY2Z SuperC process statement 252

O
OCHGT SuperC process statement 229
OEXCLUDE SuperC process statement 242
OFOCUS SuperC process statement 243
old file ID field 181
OLDDD SuperC process statement 235, 236
online help 60, 101
OOSIZE 130
Open file icon 61
Open option 61
opening

ADATA files in ASMPUT 61
Control Flow Graph window 62
Overview window 81

operands 87
options file 120
options for ASMXREF 134
options for ASMXREP 136
Options information

viewing 69
Options tab 90
ORELSE macro 11, 29
other resources 60
OTHRWISE macro 12, 35
OTITLE SuperC process statement 251
Overview window

closing 81
described 100
opening 81

OY2AGE SuperC process statement 252
OY2C SuperC process statement 252
OY2D SuperC process statement 252
OY2P SuperC process statement 252
OY2Z SuperC process statement 252

P
PAGELEN option in ASMXREF 134
PARM control statement in ASMXREF 130
PARM field (z/OS) for Disassembler 41
PARM field (z/VSE) for Disassembler 44
PARM option on LIBRARY control statement 130
PL family references 138
pop-up menu

Control Flow Graph window 96
Main window 92

primary entry point 71
process options field (SuperC primary search menu) 200
process statements 180
process statements ID field (SuperC primary search

menu) 200
product name format 142
program entry nodes 71
program entry point 71, 94

R
railroad track format, how to read xi
redo 78
Redo icon 78
Redo Layout option 78
refresh 78
Refresh icon 78
Refresh option 78
register initialization 26
remarks 87, 141

definition 141
Remove All option 70
Remove Context option 77
Remove option 70
removed context 70
removing

ADATA files 70
context 77

REPORT control statement in ASMXREF
ASMXREF 130

REPORT option in ASMXREP 115
reports in ASMXREF

ASMXREP z/VSE EXEC 127
ASMXRPT CMS EXEC 122
ASMXRPT z/OS EXEC 115
Control Flow report 138
Lines of Code report 140
list of available 109
Macro Where Used report 147
options 136
Spreadsheet Oriented report 148
Symbol Where Used 149
Tagged Source Program 154
Token Where Used report 153
understanding 137

reports, understanding 137
resizing windows 87
restoring defaults (Control Flow Graph window) 63
restoring defaults (Main window) 63
restoring fonts (Main window) 63
return arcs

hiding 79
showing 79

REVREF SuperC process statement 245
REXX references 139

326 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

S
sample ADATA files 60
scan rules for ASMXREF 133
scroll bars 84
Scroll to Source option 84
Scroll to Target option 84
scrolling 84
search file ID field (SuperC primary search menu) 200
SEARCH macro 29
search option directives

ERASRC0 255
NOIMSG 256
NONAMES 256
NOOLF 256
PRINT 256

search process options
ALLMEMS 219
ANYC 219
APNDLST 219
COBOL 220
DPACMT 220
DPADCMT 220
DPBLKCL 220
DPCBCMT 220
DPCPCMT 221
DPFTCMT 221
DPMACMT 221
DPPLCMT 221
DPPSCMT 221
FINDALL 221
IDPFX 222, 275
LMCSFC 222
LMTO 222, 272, 276
LNFMTO 222
LONGLN 222
LPSF 222, 278
LTO 223, 277
MIXED 223
NOPRTCC 223
NOSEQ 223
NOSUMS 223
SEQ 224
XREF 226, 272, 276, 277

SEARCH structured programming macro set 29
secondary entry nodes 71
secondary entry point 71, 94
SELECT macro 11, 35
SELECT structured programming macro set 35
SELECT SuperC process statement 247, 248, 249
SELECTF SuperC process statement 247
selecting a node 85
selection list (SuperC primary search menu) 200
sequence numbers 87
shipped source instructions (SSI) 140, 146
Show Analysis Messages option 66
Show Assembly Diagnostics option 65
Show Context icon 77
Show Context option 77
Show Expanded Lines option 63
Show Graph icon 62
Show Graph option 62
Show Info Notebook option 88
Show Notebook icon 88
Show Overview icon 81
Show Overview option 81
Show Return Arcs icon 79
Show Return Arcs option 79

Show Zoom Slider icon 82
Show Zoom Slider option 82
showing in ASMPUT

analysis messages 66
assembly diagnostics 65
expanded lines 63
return arcs 79
zoom slider 82

simple DO 21
slide show demo 60
SLIST SuperC process statement 250
sort order option 136
source code 62

changing font 62
finding text in 66
highlight 87
interacting with control flow graph 85
viewing 62

source code area
color coding 87

source list file in CMS 119
source node 94
Spreadsheet Oriented (SOR) report 148
SRCH (SuperC process stmt directive) 212
SRCHFOR SuperC process statement 245
SRCHFORC SuperC process statement 245
stacked items xii
standard change flags 142, 143, 144
standard flags 140
starting 58
Statistics information

viewing 70
Statistics tab 90
STRTSRCH macro 11, 29
structured programming macros

accessing 12
ASMMREL macro 12
backward indexing 25
branch relative on condition instructions 12
branching to the ENDDO 22
CASE macro set 30
counting 24
DO indexing group 20
DO loop terminator generation 21
DO macro set 19
DOEXIT macro 28
ELSEIF macro 18
EXITIF macro 28
explicit specification 24
forward indexing 26
IF macro option A 14
IF macro option B 15
IF macro option C 15
IF macro option D 16
IF macro set 13
IF macros with Boolean operators 17
infinite loop 21
leaving a nested DO 23
purpose 11
register initialization 26
SEARCH macro set 29
SELECT macro set 35
simple DO 21
UNTIL keyword 27
using 11
WHILE keyword 27

Index 327

SuperC
introduction 171

SuperC asterisk-wildcard 180
SuperC CMS command line option directive 255
SuperC CMS command line statement option directives 256
SuperC CMS file selection list

ADD 291, 294
BOTTOM 294
CANCEL 291, 294
DOWN 291, 294
File/Member Selection List commands 291
LOCATE 291, 294
RESET 291, 294
SELECT 291, 294
SELECT * 291, 295
TOP 295
UP 291, 295

SuperC CMS files used 297
SuperC Comparison

EXEC SuperC statement, z/OS 177
JCL requirements, z/OS 176
JCL requirements, z/VSE 193
z/OS batch 176
z/OS sample JCL 176
z/VSE 193
z/VSE sample JCL 193

SuperC comparison listing
| (change bar) 261
change bar (|) 261
column title line 259
D (deleted line) 260
DC (delete compose) 261
DEL= (delete TYPE code) 261
delete compose (DC) 261
delete moved (DM) 261
delete replace (DR) 260
deleted line (I) 260
DLMDUP listing example 265
DM (delete moved) 261
DMR= (delete-move-reformat TYPE code) 261
DMV= (delete-move TYPE code) 261
DR (delete replace) 260
FILE compare of file groups 267
I (inserted line) 260
IC (insert compose) 260
id column 259
ID column 259
ID column (listing file) 259
IM (insert moved) 261
IMR= (insert-move-reformat TYPE code) 261
IMV= (insert-move TYPE code) 261
INS= (insert TYPE code) 261
insert compose (IC) 260
insert moved (IM) 261
inserted line (I) 260
LEN column 259, 260
LEN column (listing file) 259, 260
LOCS listing example 268
MAT= (match TYPE code) 261
match compose (MC) 260
MC (match compose) 260
member summary section 259
N-LN# 259, 260
N-LN# (listing file) 259, 260
NARROW listing example 265
O-LN# 259, 260
O-LN# (listing file) 259, 260

SuperC comparison listing (continued)
overall summary section 259
page headings

compare date 259
compare time 259
new file ID 259
old file ID 259
page number 259
printer control character 259
program date 259
program ID 259
program version 259

reformat new (RN) 260
reformat old (RO) 260
RFM= (reformat TYPE code) 261
RN (reformat new) 260
RO (reformat old) 260
RPL= (replace TYPE code) 261
scale 260
section title line 259
side-by-side listing example 265, 266
source line column 259
SOURCE LINE column 260
SOURCE LINE column (listing file) 259, 260
TYPE column 259, 260
TYPE column (listing file) 259, 260
WIDE listing example 266

SuperC comparison process statements
.* 230
* 230
CHNGV 229
CMPBOFS 231
CMPCOLM 232
CMPCOLMN 232
CMPCOLMO 232
CMPLINE 233
CMPSECT 234
COLHEAD 239
DPLINE 241
DPLINEC 241
LNCT 244
LSTCOLM 244
NCHGT 229
NEWDD 235, 236
NEXCLUDE 242
NFOCUS 243
NTITLE 251, 259
NY2AGE 252
NY2C 252
NY2D 252
NY2P 252
NY2Z 252
OCHGT 229
OEXCLUDE 242
OFOCUS 243
OLDDD 235, 236
OTITLE 251, 259
OY2AGE 252
OY2C 252
OY2D 252
OY2P 252
OY2Z 252
REVREF 245
SELECT 247, 248, 249
SELECTF 180, 247, 268
SLIST 250
UPDDD 235, 236

328 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

SuperC comparison process statements (continued)
WORKSIZE 251
Y2PAST 255

SuperC comparison type
BYTE 180, 181
FILE 181
LINE 173, 181, 259
WORD 173, 181, 270

SuperC comparison, on CMS command line input
ADD 291, 294
BOTTOM 294
CANCEL 291, 294
DOWN 291, 294
FILELIST 192, 193
LOCATE 291, 294
OLF 192
options list file 192
PF key definitions 295
process statements menu 190
PROMPT 190
RESET 291, 294
SELECT 291, 294
SELECT * 291, 295
selection list 290
SUPERC NAMES * 192
TOP 295
UP 291, 295

SuperC comparison, on CMS menu input 201
* (selection list) 181
asterisk-wildcard 180
auto display pgm 179, 185
BROWSE 185
command 179, 180
compare type 179
COND (display output option) 185
display output 185
display output option 179, 185, 206
EPDF 185
EXEC SuperC statement, z/OS 199
execute and quit 185
file ID (new file ID) 180
file ID (old file ID) 180
file_id (listing file id) 182
file_id (process stmts id) 184
file_id (update file id) 184
File/Member selection list 180
help 185
hex dump 181
JCL requirements, z/OS 199
JCL requirements, z/VSE 213
listing file ID 179, 182
listing type 179, 181
MACLIB/TXTLIB member 180
member 179, 180, 202
new file ID 179, 180
NO (display output option) 185
NO (selection list) 181
old file ID 179, 180
percent-wildcard 180
PF key definitions (SuperC) 185
print 185
proc opts 185
process option menus 185
process statements 185
process statements file 184
process statements ID 179
process statements menu 185

SuperC comparison, on CMS menu input (continued)
quit 185
selection list 180, 203
SuperC Primary Menu 179
UPD (display output option) 185
update file ID 179, 184
WIDE listing 186
WIDE print menu 185
XEDIT 185
YES (display output option) 185
z/OS batch 199
z/OS sample JCL 199
z/VSE 213
z/VSE sample JCL 213

SuperC comparison, on z/OS 176
SuperC comparison, on z/VSE 193
SuperC comparison, primary menu fields

auto display pgm 185, 206
compare type 181
display output option 185
listing file ID 182, 205
listing type 181
process options 182, 204
process statements ID 184, 205
update file ID 184

SuperC introduction
applications 174
find match example 172

SuperC listing type
CHNG 181, 182
DELTA 181, 182, 259
LONG 180, 181, 182
NOLIST 182
OVSUM 181, 182
UPDCMS8 281
UPDCNTL 282
UPDLDEL 284
UPDMVS8 285
UPDPDEL 286
UPDREV 279
UPDREV2 280
UPDSEQ0 287
UPDSUMO 287

SuperC listings 257
SuperC messages 299
SuperC option directives

ERASRC0 255
MENU 255
NOIMSG 256
NONAMES 256
NOOLF 256
PRINT 256

SuperC pairing of CMS files and members 295
SuperC percent-wildcard

CMS SuperC Command Line 186
syntax 186

SuperC process options
ALLMEMS 219
ANYC 219
APNDLST 219
APNDUPD 219
ASCII 219
CKPACKL 219
CNPML 219
COBOL 220
COVSUM 220
CPnnnnn 220

Index 329

SuperC process options (continued)
DLMDUP 220, 265
DLREFM 220
DPACMT 220
DPADCMT 220
DPBLKCL 220
DPCBCMT 220
DPCPCMT 221
DPFTCMT 221
DPMACMT 221
DPPLCMT 221
DPPSCMT 221
FINDALL 221
FMSTOP 221
FMVLNS 221, 261
GWCBL 222, 261
LOCS 222, 268
LONGLN 222
NARROW 223, 265
NOPRTCC 223, 259, 270
NOSEQ 223
NOSUMS 223
REFMOVR 223
SDUPM 223
SEQ 224
SYSIN 224
UPDCMS8 185, 224
UPDCNTL 185, 224
UPDLDEL 185, 224
UPDMVS8 185, 224
UPDPDEL 185, 224
UPDREV 173, 185, 225
UPDREV2 185, 225
UPDSEQ0 185, 225
UPDSUMO 185, 226
VTITLE 226
WIDE 226, 266
XWDCMP 181, 226
Y2DTONLY 226

SuperC process statements
+ (DPLINE operand) 242
+ (SRCHFOR operand) 246
+start_column (DPLINE operand) 242
+start_column (SRCHFOR operand) 246
B (COLHEAD keyword) 240
BTM (CMPBOFS keyword) 231
BTM (CMPLINE keyword) 233
BTM (CMPSECT keyword) 234
C (COLHEAD keyword) 240
D (COLHEAD keyword) 240
end_col (CMPSECT operand) 235
end_column (CMPCOLM operand) 232
end_position (NEXCLUDE operand) 243
end_position (NFOCUS operand) 243
end_position (OEXCLUDE operand) 243
end_position (OFOCUS operand) 243
fixed (Y2PAST operand) 255
hex_offset (CMPBOFS operand) 231
last_start_column (CMPLINE operand) 233
last_start_column (DPLINE operand) 242
last_start_column (LSTCOLM operand) 244
last_start_column (NCHGT operand) 230
last_start_column (OCHGT operand) 230
last_start_column (SRCHFOR operand) 246
line number (CMPLINE operand) 233
NBTM 231
NBTM (CMPBOFS keyword) 231

SuperC process statements (continued)
NBTM (CMPLINE keyword) 233
NBTM (CMPSECT keyword) 234
new_file_ID (SELECTF operand) 247
new_member (SELECT operand) 249, 250
new_name (SELECT operand) 248
NTOP 231
NTOP (CMPBOFS keyword) 231
NTOP (CMPLINE keyword) 233
NTOP (CMPSECT keyword) 234
number (CHNGV operand) 229
number (LNCT operand) 244
number (LPSFV operand) 245
OBTM 231
OBTM (CMPBOFS keyword) 231
OBTM (CMPLINE keyword) 233
OBTM (CMPSECT keyword) 234
OFF (SLIST operand) 250
old_file_ID (SELECTF operand) 247
old_member (SELECT operand) 249, 250
old_name (SELECT operand) 248
ON (SLIST operand) 250
OTOP 231
OTOP (CMPBOFS keyword) 231
OTOP (CMPLINE keyword) 233
OTOP (CMPSECT keyword) 234
output_string (NCHGT operand) 230
output_string (OCHGT operand) 230
P (COLHEAD keyword) 240
P (SRCHFOR operand) 246
RCVAL=number (REVREF operand) 245
REFID=name (REVREF operand) 245
S (SRCHFOR operand) 246
search_file_ID (SELECTF operand) 247
search_member (SELECT operand) 249, 250
search_name (SELECT operand) 248
search_string (CMPLINE operand) 233
search_string (CMPSECT operand) 235
search_string (NCHGT operand) 230
search_string (OCHGT operand) 230
section ID (CMPSECT operand) 234
sliding (Y2PAST operand) 255
start_column (CMPCOLM operand) 232
start_column (CMPLINE operand) 233
start_column (CMPSECT operand) 235
start_column (DPLINE operand) 242
start_column (LSTCOLM operand) 244
start_column (NCHGT operand) 230
start_column (OCHGT operand) 230
start_column (SRCHFOR operand) 246
start_position (NEXCLUDE operand) 243
start_position (NFOCUS operand) 243
start_position (OEXCLUDE operand) 243
start_position (OFOCUS operand) 243
string (SRCHFOR operand) 246
title_name (NTITLE operand) 251
title_name (OTITLE operand) 251
TOP (CMPBOFS keyword) 231
TOP (CMPLINE keyword) 233
TOP (CMPSECT keyword) 234
W (SRCHFOR operand) 246
Z (COLHEAD keyword) 240

SuperC reasons for differing comparison results 297
SuperC return codes

descriptions 298
empty input file error 299
error 298

330 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

SuperC return codes (continued)
error return codes 298
file attributes (inconsistent) 298
inconsistent file attributes 298
insufficient storage error 299
invalid sequence numbers 298
listing file error (disk full) 299
listing file error (read only) 299
listing file I/O error 298
no common members/files to compare 299
no data to compare error 299
normal completion 298
normal completion return codes 298
storage (insufficient) error 299
update file error (read only) 299
update file I/O error 298
warning 298
warning return codes 298

SuperC search listing
page headings 270

compare date 270
compare time 270
page number 270
printer control character 270
program date 270
program ID 270
program version 270

SuperC search process statement directives
CC 256
LC 257
LT 257
RR 257
SRCH(string) 212

SuperC search process statements
.* 230
* 230
CMPCOLM 232
CMPLINE 233
CMPSECT 234
COLHEAD 239
DPLINE 241
DPLINEC 241
LNCT 244
LPSFV 244
LSTCOLM 244
NCHGT 229
NTITLE 251
SELECT 247, 248, 249
SELECTF 247
SLIST 250
SRCHFOR 245
SRCHFORC 245

SuperC search, on CMS command line input
| ("OR") 212
& ("AND") 212
invoking 207
OLF 213
options list file 213
process statements menu 211
PROMPT 211
SUPERC NAMES * 213

SuperC search, on CMS menu input
* (selection list) 204
asterisk-wildcard 201
auto display pgm 206
BROWSE 206
COND (display output option) 206

SuperC search, on CMS menu input (continued)
display output 206
EPDF 206
file ID (new file ID) 201
file ID (old file ID) 201
file_id (listing file id) 205
file_id (process statements id) 205
File/Member selection list 203
listing file ID 205
MACLIB/TXTLIB member 202
new file ID 201
NO (selection list) 204
old file ID 201
PF key definitions (search) 206
process statements file 205
selection list 203
SuperC Primary Search Menu 200
UPD (display output option) 206
XEDIT 206
YES (display output option) 206

SuperC search, on z/OS 199
SuperC search, on z/VSE 213
SuperC search, primary menu fields

ASIS 200, 203
auto display pgm 200
CAPS 200, 203
command 200
listing file ID 200
member 200
process options 200
process statements ID 200
search file ID 200
search string fields 200
selection list 200

SuperC side-by-side listing 223
SuperC update files

UPDCMS8 281
UPDCNTL 282, 283, 284
UPDLDEL 284, 285
UPDMVS8 285, 286
UPDPDEL 286
UPDREV 279, 280
UPDREV2 Revision File (2) 280
UPDSEQ0 287
UPDSUMO 287, 288, 289, 290

SWUSIZE 130
Symbol Where Used (SWU) report 149

sample report 150
syntax notation, description xi
SYSIN DD statement for ASMXREF 115

T
Tagged Source Program (TSP) report 154
target node 94
three-dimensional nodes 94
token statement file in CMS 119
token statement file in z/OS 111
token statement file in z/VSE 123
TOKEN statement in ASMXREF 131
token statements 131
Token Where Used (TWU) report 153
tokens 131

default 134
file 110, 119
statement 131

topic help 101

Index 331

transfer file to PC 149
two-dimensional nodes 94

U
ULABL Disassembler statement 47
unit descriptor 141, 142
unit descriptor format 142
unit descriptor keywords 142

$MAC 142
$MOD 142
$SEG 142
COMP 142
PROD 142

unit name format 142
Unmark All option 80
Unmark option 80
unmarking nodes 80
unresolved external call 94
unresolved nodes 71
UNTIL structured programming macro keyword 27
UPDDD SuperC process statement 235, 236
user abends 168
user guide 60
users xi
using ASMPUT online help 101
USING Disassembler statement 47
USING instruction

ASMXREF 109
ASMXREP 109

using the Disassembler 39

V
viewing in ASMPUT

file information 67
information notebook 67
Library information 70
Options information 69
source code 62
Statistics information 70

W
What's This help 102
WHEN macro 12, 35
WHILE structured programming macro keyword 27
window areas 87

changing size 87
working with ADATA files 61
working with the control flow graph 70
WORKSIZE SuperC process statement 251

X
XOBJECT assembly option 58
XRFLANG DLBL statement 126
XRFLANG file in CMS 121
XRFTOKEN DLBL statement 126
XRFTOKN in CMS 118

Y
Y2PAST SuperC process statement 255
yellow node 80, 94

Z
z/OS

ASMXREF EXEC statement 114
ASMXREF invoking with JCL 111
ASMXREF sample JCL 112
ASMXREF SYSIN DD statement 115
ASMXREP JCL requirements 111
ASMXRPT EXEC statement 115
Disassembler JCL requirements 40
SuperC EXEC statement 177, 199
SuperC invoking with JCL 176, 199

z/OS documents 311
z/OS procedure

ASMXRPT 111
ASMXSCAN 111

z/VM documents 311, 312
z/VSE

ASMXREF invoking with JCL 122
ASMXREF sample JCL 123
ASMXREP EXEC statement 127
ASMXREP JCL requirements 127
Disassembler JCL requirements 43
EXEC ASMXREF statement 126
SuperC invoking with JCL 213
SuperC sample JCL 193, 213
z/VSE SuperC invoking 193

z/VSE documents 312
Zoom In icon 82
Zoom In On option 82
Zoom In option 82
Zoom In Rectangle icon 82
Zoom In Rectangle option 82
Zoom Out From option 82
Zoom Out icon 82
Zoom Out option 82
Zoom Out Rectangle icon 82
Zoom Out Rectangle option 82
zoom slider 94

hiding 82
showing 82

zooming
in 82
out 82

332 High Level Assembler for z/OS & z/VM & z/VSE: Toolkit Feature User's Guide

����

GC26-8710-10

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	Syntax notation

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Chapter 1. Introducing the Toolkit Feature
	Toolkit Feature components
	Toolkit Feature structured programming macros
	Toolkit Feature Disassembler
	Toolkit Feature Program Understanding Tool
	Toolkit Feature Cross-Reference Facility
	Toolkit Feature Interactive Debug Facility
	Enhanced SuperC

	Potential uses for the Toolkit Feature
	Recovery and reconstruction
	Analysis and understanding
	Modification and testing
	Summary

	Chapter 2. Using structured programming macros
	Accessing the macros
	The ASMMREL macro
	The IF macro set
	IF macro option A
	IF macro option B
	IF macro option C
	IF macro option D
	IF macros with Boolean operators
	The ELSEIF macro

	The DO macro set
	The DO indexing group
	DO loop terminator generation
	Simple DO
	Infinite loop
	Branching to the ENDDO
	Leaving a nested DO
	Explicit specification
	Counting
	Backward indexing
	Forward indexing
	Register initialization
	The UNTIL and WHILE keywords
	Looping with DOEXIT and EXITIF

	The SEARCH macro set
	The CASE macro set
	The SELECT macro set

	Chapter 3. Using the disassembler
	Invoking the disassembler
	Invoking the disassembler on z/OS
	z/OS JCL Example
	Disassembler options on z/OS

	Invoking the disassembler on CMS
	CMS example
	Disassembler options on CMS

	Invoking the disassembler on z/VSE
	z/VSE JCL example:
	Disassembler options on z/VSE

	Control statements
	Module-CSECT statement (required)
	Format

	DATA-only statement (optional)
	INSTR-only statement (optional)
	DS-area statement (optional)
	DSECT definitions (optional)
	ULABL statements
	USING statements
	COPY statement (optional)
	Comment statement (optional)

	Disassembling a module for the first time
	Output description
	SYSPUNCH (SYSPCH for z/VSE) content
	SYSPRINT (SYSLST for z/VSE) content

	Disassembler CMS messages
	Disassembler messages

	Chapter 4. Using the Program Understanding Tool
	Introducing ASMPUT
	More about nodes
	Getting started
	Other resources

	Working with ADATA files
	Opening an ADATA file
	Opening and closing the control flow graph window
	Viewing source code
	Changing font properties
	Restoring defaults
	Showing and hiding expanded lines
	Showing and hiding assembly diagnostics
	Showing and hiding analysis messages
	Finding the next assembly diagnostic or analysis message
	Finding text in source code

	Viewing ADATA file information
	Viewing Job Id information
	Viewing HLASM files information
	Viewing options information
	Viewing statistics information
	Viewing libraries information
	Removing (closing) a file

	Working with the control flow graph
	Expanding and collapsing layers
	Adding and removing context
	Refreshing and redoing
	Hiding and showing return arcs
	Marking and unmarking nodes
	Opening and closing the Overview window
	Zooming
	Scrolling
	The interaction between source code and the control flow graph

	ASMPUT windows and window areas
	Main window
	Main window file list area
	Main window source code area
	Main window information notebook

	Control Flow Graph window
	Control Flow Graph window menu options and toolbar icons
	Overview window

	Restrictions
	Using online help
	Using topic help
	Using what's this help

	ASMPUT messages

	Chapter 5. Using the Cross-Reference Facility
	Invoking the Cross-Reference Facility
	Invoking ASMXREF on z/OS
	z/OS JCL Example
	Sample procedures

	Invoking ASMXREF on CMS
	ASMXREF Control File
	ASMXREF Token Statement File
	ASMXREF Source List File
	Default options file
	ASMXREF Language File
	ASMXSCAN EXEC
	ASMXRPT EXEC

	Invoking ASMXREF on z/VSE
	z/VSE JCL example

	ASMXREF Control Statements
	*
	Library
	Include
	Exclude
	Parm
	Report

	ASMXREF Token Statement
	Token
	Scanning rules for ASMXREF
	Generic matching rules

	ASMXREF Options
	ASMXREF XRFLANG Statements
	Default token segment
	Language segment

	ASMXREP Options
	Understanding the reports
	Languages supported by reports
	Control flow (CF) report
	C family references
	PL family references
	REXX references

	Lines Of Code (LOC) report
	Changed Source Instruction (CSI) measurements

	The LOOC report
	The LOC per Class section
	The LOC per Object section
	The Objects per Class section

	Macro Where Used (MWU) report
	Spreadsheet Oriented Report (SOR)
	File transfer to PC

	Symbol Where Used (SWU) report
	Token Where Used (TWU) report
	Tagged Source Program (TSP)

	ASMXREF Messages
	Message list

	ASMXREF User Abends

	Chapter 6. Using Enhanced SuperC
	The SuperC comparison
	The SuperC search
	SuperC features for date comparisons
	General applications
	How SuperC and search-for filter input file lines
	How SuperC corrects false matches
	How SuperC partitions and processes large files
	Comparing load modules
	Comparing CSECTs
	Invoking the SuperC comparison
	Invoking the comparison on z/OS
	z/OS JCL example

	Invoking the comparison on CMS using menu input
	COMMAND
	New file ID and old file ID
	Member
	Selection list
	Compare type
	Listing type
	Listing file ID
	Process options
	Process statements ID
	Update file ID
	Display output
	Auto display pgm
	Primary comparison menu PF key definitions
	Printing the wide listing

	Invoking the comparison on CMS using command line input
	Types of options (additional)
	Command line priority and overriding
	Compares from FILELIST

	Invoking the comparison on z/VSE
	z/VSE JCL example 1: Non-VSAM-managed sequential files
	z/VSE JCL example 2: VSAM-managed sequential files
	z/VSE JCL example 3: VSAM files
	z/VSE JCL example 4: Tape files
	z/VSE JCL example 5: Librarian members

	Invoking the SuperC search
	Invoking the search on z/OS
	z/OS JCL example

	Invoking the search on CMS using menu input
	Invoking the search on CMS using command line input
	Examples of invoking the SuperC search on the CMS command line
	Types of options
	Command line priority and overriding
	SRCH process statement directive

	Invoking the search on z/VSE
	z/VSE JCL example 1: Non-VSAM-managed sequential files
	z/VSE JCL Example 2: VSAM-managed sequential files
	z/VSE JCL example 3: VSAM files
	z/VSE JCL example 4: Tape file
	z/VSE JCL example 5: Librarian members

	Process options
	Process statements
	Change listing value
	Change text
	Comment lines
	Compare byte offsets
	Compare (search) columns
	Compare lines
	Compare sections
	DD-MVS alternate DD names
	DD-VSE DLBL/TLBL definitions
	z/VSE (disk) files
	z/VSE (tape) files
	z/VSE librarian members
	Using the wildcard character to select groups of members

	Define column headings
	Do not process lines
	Exclude data
	Focus on data
	Line count
	List columns
	List previous-search-following value
	Revision code reference
	Search strings in the input file
	Select files from a list of files (CMS)
	Select members or files (CMS)
	Select members (z/VSE)
	Select PDS members (z/OS)
	Statements file listing control
	Title alternative listing
	Work size
	Year aging
	Date definitions
	Date formats (keyword suffixes: C, Z, D, P)

	Global date

	CMS command line option directives
	CMS command line statement option directives
	Understanding the listings
	General listing format
	How to view the listing output
	The comparison listing
	Page headings
	Listing output section
	Member summary section (CMS)
	Overall summary section
	Examples of comparison listings

	The search listing
	Page heading
	Source lines section
	Summary section
	Examples of search listings

	Update files
	Revision file
	Revision file (2)
	Update CMS sequenced 8 file
	Update control files
	Update control file (LINE Compare Type)
	Update control file (WORD compare type)
	Update control file (BYTE compare type)

	Update long control
	Update MVS sequenced 8 file
	Update prefixed delta lines
	Update sequenced 0 file
	Update summary only files
	Update summary only file (LINE compare type)
	Update summary only file (WORD compare type)
	Update summary only file (BYTE compare type)

	CMS file selection list
	Getting to the selection list menus
	COMMAND field
	The selection list menu (comparison)
	The selection list menu (search)

	How SuperC pairs CMS files and members
	Pairing Files
	Pairing members

	CMS files used by SuperC
	Reasons for differing comparison results
	Return codes
	SuperC messages

	Notices
	Trademarks

	Bibliography
	Glossary
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

